Answer:
e = 50.27 give / s
Explanation:
The expression for simple harmonic motion is
x = A cos (wt + Ф)
in this case they give us the amplitude A = 3.9 cm and frequency f = 8.0 Hz
The angular and linФear variables are related
e = 2π d
e = 2π 8
e = 50.27 give / s
let's look for the constant fi
so let's find the time to have the maximum displacement
v = dx / dt
v = -A w sin (wt +Ф)
for the point of maximum displacement the speed is I think
0 = - sin (0 + Ф)
therefore fi = 0
Let's put together the equation of motion
x = 0.039 sin (50.27 t)
v = 0.039 50.27 sin (50.27 3)
v = 1.96 50 0.01355
v = 0.0266 m / s
The AU ... Astronomical Unit ... used to be defined as the average distance between the Sun and Earth during the year.
Now it's defined as 149,597,870,700 meters exactly.
Measuring mass with a balance
Answer:
V = 15m/s
Explanation:
Given the following data;
Initial velocity = 3m/s
Time = 8secs
Acceleration = 1.5m/s²
To find the final velocity, we would use the first equation of motion;
V = U + at
Substituting into the equation, we have
V = 3 + 1.5*8
V = 3 + 12
V = 15m/s