A) In the case of the Boundary Thickness Layer we use the given formula,

We know as well that,
Re = Número de Reynolds = 
Where,
U = velocity
= kinematic viscosity
For water, kinematic viscosity, 
So, 



B) For flat plate boundary layer. Given the Critical Reynolds Number.= 5*10^5 we know that is equal to Re above.
Thus, 
C. Wall shear stress,

For water, dynamic viscosity,
= 2.344*10^-5 lbf-s/ft^2


Even though the Earth has less mass than the Sun, the moon orbits Earth because it’s much nearer to it.
<u>Explanation
:</u>
The fact is that the Moon orbits both the Sun and the Earth. On looking at the orbit of the Moon, it orbits in the same manner the way Earth does, but in a Spiro graph pattern along with orbiting the Earth with a small wobble to it.
Since the Sun has greater distance from the Moon as compared to the Earth (around 400 times), the gravity of Earth draws better impact on the Moon.
The escape velocity of the Moon is about 1.2 km/s at the distance from the Earth which is not sufficient to get ripped away from the Earth.
Hence, the moon orbits the Earth along with orbiting the Sun together with the Earth, but seems as if it only orbits the Moon.
Answer:
B
Explanation:
Friction always eventually stops whatever is in motion.
Answer:
110 yds
Explanation:
Well if 55 yards is 1/2 of the field then 2 x 55 = 110 yards is total field length
Copernicus's model states that the sun is in the center, and that the planets move around it in a circle. Kepler's first law of planetary motion says that they move around the sun in an ellipse.