The gas planets usually have extremely high gravitational pulls, the surface isn't solid (since its a gas planet), and gas planets are larger than the inner planets.
<span>Similarities- These planets all have moons and they both revolve around the sun (obviously).
Hope this helps.</span>
Answer:
attached below is the free body diagram of the missing illustration
Initial kinetic energy of the electron = 3 eV
Explanation:
The conclusion that can be drawn about the kinetic energy of the electron is

E
= initial kinetic energy of the electron
E
= -4 eV
E
= -1 eV
insert the values into the equation above
= -1 -(-4) eV
= -1 + 4 = 3 eV
media.discordapp.net/attachments/782414373888458783/826224189828366377/video0.mp4
Answer: rp/re= me/mp= 544 * 10^-6.
Explanation: To calculate this problem we have to consider the circular movement by the electron and proton inside a magnetic field.
Then the dynamic equation for the circular movement is given by:
Fcentripetal= m*ω^2.r
q*v*B=m*ω^2.r
we write this for each particle then we have the following:
q*v*B=me* ω^2*re
q*v*B=mp* ω^2*rp
rp/re=me/mp=9.1*10^-31/1.67*10^-27=544*10^-6
Answer:
I don't really understand the wording of this question but I'd totally cuddle a Koala! If they weren't so mean
Explanation:
Thanks for listening!