Answer:
The larger pebble has 25 times more mass.
Explanation:
To solve the exercise it is necessary to apply the work and energy conservation equations.
For the case described, the work done must be preserved and must be the same, that is,

By definition work linked to the conservation of kinetic energy would be given by






The ratio between the mass and the velocity would be,



Therefore the answer is: The larger pebble has 25 times more mass.
Answer:

Explanation:
We are given that
Mass,
Radius,r=0.8 m

Height,h=2.9 m
We have to find the angular acceleration of the cylinder.
According to question


Where



Substitute the value


Where 


Angular acceleration,
Answer:
We will be effected not only with health, but also with our ability to carry out our genes to the next generation.
Explanation:
Our health is important, as we all know, so anything that happens to the digestive system will have a serious problem to our longevity, our reproductive system is also important to carry out our genes, and give birth to a new generation, it wouldn't effect us if only 1 person couldnt reproduce, but if everyone had a problem in their reproductive system, it would mean the extinction of all humanity.
Answer:
272.89g
Explanation:
Find the diagram to the question in the attachment below;.
Using the principle of moment to solve the question which states that the sum of clockwise moment is equal to the sum of anticlockwise moment.
Moment = Force * Perpendicular distance
Taking the moment of force about the pivot.
Anticlockwise moment:
The 85g mass will move in the anticlockwise
Moment of 85g mass = 85×36.6
= 3111gcm
Clockwise moment.
The mass of the metre stick M situated at the centre (50cm from each end) will move in the clockwise direction towards the pivot.
CW moment = 11.4×M = 11.4M
Equating CW moment to the ACW moment we will have;
11.4M = 3111
M = 3111/11.4
M = 272.89g
The mass of the metre stick is 272.89g
Answer:
10.2 atm
Explanation:
Use ideal gas law:
PV = nRT
Initial number of moles is:
(2.20 atm) (0.859 L) = n (0.0821 atm L / mol / K) (565 K)
n = 0.0407 mol
At the new volume and temperature, the pressure is:
P (0.268 L) = (0.0407 mol) (0.0821 atm L / mol / K) (815 K)
P = 10.2 atm