a. A dam is usually built at the site of hydroelectric power. As water accumulates, its potential power for producing electric power increases. As this water moves downstream from the dam, mostly through a fall, its kinetic energy is harnessed by turbines and converted to electric energy.
b. One factor is the height of the fall of the water from the dam. The higher the height the higher the kinetic energy of the water and hence can be converted to higher electric energy. The higher the number of coils of the turbine generator being rotated by the water, the higher the conversion to electric current.
c. One is impoundment. This type is the most common and involves the building of a dam to store water and later the water is released to turn turbines. The second type is diversion. This type does not require a dam. Some water is diverted from the main river to create a pen-stock that runs a turbine.
d. The advantage of hydroelectric power is that is is a clean energy source hence does not cause global warming. Global warming can have economic consequences. The operating cost of this type of plant is low hence the costs of electricity are able to be kept low for the consumers. 2 disadvantage is that creating a dam upstream causes a change in the physical and chemical characteristics of the river or water bodies affecting ecosystems. Another is that electricity is dependent on the water regime hence dependency is tied to climate.
Answer:
उव्ग्वुव ह्व्झ एउएइहे एइएइएइएएइ सिसुब्स्सी बीस सिस इस्ब एइब
Explanation:
?उग्व्ब्वु विब्सिए इसिग्व विद्बिअब्द सिह्व्व इस्ब्व दिव्ब्स विह्द ऐद्जिइ सुउगव्दी सिइगैगे क्ज्गैइव अजिव्व्ज्व्स कैह्द अजि ह्ज्फ्ज इअह इकुगै ईग इअबे अजिव्ब जैइअब इऐहे ऐइहे ऐइग्गे अत्व्ब ओप्झब रोज दिधिए ऊइफ्ब इसुहद ईउहे सिउउअ दिइब्द स्सिउए ऐइहे सिएय्व एउविये एइव्वे
Answer:
Fucd6
Explanation:
Cuufufcuvjgjvug7fuguguguguf7
1. The amount of energy carried by the wave is related to the Amplitude of the wave.
2. A mechanical wave requires an initial energy input, Once this initial energy is added the wave travels through the medium until all it's energy is transferred.
Answer:
2.48 m/s
Explanation:
We can use the kinematic equation,
s = ut +½at²
Where
s = displacement
u = initial velocity
t = time taken
a = acceleration
Using the equation in vertical direction,
321 = 0×t +½×g×t², u = 0 because initial vertical velocity is 0
We get t = 8.01 s
Using the equation in the horizontal direction,
52 = u×8.01 +½×0×(8.01)²,. a = 0 because no unbalanced force act on object in that direction
So u = 2.48 m/s