A. 0.5kg
To get this answer you need to follow the equation of KE=0.5*mv^2
But we don't have the m part in the equation. So just plug in the numbers to see which works best, though I can tell you before we do that the answer would be a.
As you may know, gravity, is a force of 9.8 m/s. And we want to get 9.8 Joules. So if we take a half a kg stone, release it at one meter, we get half of the normal gravity pull, 4.90 Joules. That means if we take half a kg stone and drop it at a doubled height, we get 9.8 Joules.
That is also to say that if we have a 1kg stone and drop it at one meter you will get the normal pull of gravity in Joules, 9.8J.
Be careful though, this does not mean if you drop a 1kg stone and a .5 kg stone the 1kg will hit first. This simply means that the 1kg stone will have twice the Joules that the .5kg stone has.
Answer:
a) v, v
b) 2mv^2
c) Elastic collion
Explanation:
(a) The velocity of the second particle after the collision is (v2x,v2y)=(v,−v). From momentum conservation in x-direction
Here x, y represent direction.They are not variable. 1 and 2 represent before and after.
2vm=v1xm+v2xm, we find v1x=v.
From momentum conservation in y-direction
0 =v1ym+v2ym, we findv1y=v.
(b) By energy conservation principle
Before: K=1/2m(2v)^2=2mv^2.
After: K=1/2m(v^2(1x)+v^2(1y))+12m(v22x+v22y)=2mv^2
(c) The collision is elastic
The moon's orbital and rotational periods are identical or the same, I<span>ts rate of spin is done in unison with its rate of revolution (the time that is needed to complete one orbit). Thus, the moon rotates exactly once every time it circles the Earth.</span>
Gravitational energy is a form of potential energy because it is dependent on the mass of an object and needs to be calculated for the specific object.