The acceleration due to gravity near the surface of the planet is 27.38 m/s².
<h3>
Acceleration due to gravity near the surface of the planet</h3>
g = GM/R²
where;
- G is universal gravitation constant
- M is mass of the planet
- R is radius of the planet
- g is acceleration due to gravity = ?
g = (6.626 x 10⁻¹¹ x 2.81 x 5.97 x 10²⁴) / (6371 x 10³)²
g = 27.38 m/s²
Thus, the acceleration due to gravity near the surface of the planet is 27.38 m/s².
Learn more about acceleration due to gravity here: brainly.com/question/88039
#SPJ1
B 20 m/s
It should go to 100 that fast nor 40
When a car approaches you, the sound waves that reach you have a shorter wavelength and a higher frequency. You hear a sound with a higher pitch. When the car moves away from you, the sound waves that reach you have a longer wavelength and lower frequency.
?? ⬇️
An approaching source moves closer during period of the sound wave so the effective wavelength is shortened, giving a higher pitch since the velocity of the wave is unchanged. Similarly the pitch of a receding sound source will be lowered.
The Doppler effect is an effect observed in light and sound waves as they move toward or away from an observer. One simple example of the Doppler effect is the sound of an automobile horn. Picture a person standing on a street corner. A car approaches, blowing its horn.
Comparing two waves of the same wavelength, a higher frequency is associated with faster movement. Comparing two waves of different wavelengths, a higher frequency doesn't always indicate faster movement, although it can. Waves of different wavelengths can have the same frequency.
The pitch of a sound is our ear's response to the frequency of sound. Whereas loudness depends on the energy of the wave. ... The pitch of a sound depends on the frequency while loudness of a sound depends on the amplitude of sound waves.
<span>The sun's circumference is about 2,713,406 miles (4,366,813 km). The total volume of the sun is 1.4 x 1027 cubic meters. About 1.3 million Earths could fit inside the sun. The mass of the sun is 1.989 x 1030 kilograms, about 333,000 times the mass of the Earth. hope this helps! :) please chose brainlest
</span>
<span>g = GMe/Re^2, where Re = Radius of earth (6360km), G = 6.67x10^-11 Nm^2/kg^2, and Me = Mass of earth. On the earth's surface, g = 9.81 m/s^2, so the radius of your orbit is:
R = Re * sqrt (9.81 m/s^2 / 9.00 m/s^2) = 6640km
here, the speed of the satellite is:
v = sqrt(R*9.00m/s^2) = 7730 m/s
the time it would take the satellite to complete one full rotation is:
T = 2*pi*R/v = 5397 s * 1h/3600s = 1.50 h
Hope it help i know it's long and may be confusing but if you have any more questions regarding this topic just hmu! :)</span>