Answer:

Step-by-step explanation:
Since the number of residents within five miles of each of your stores is asymmetrically distributed, the distribution of the sample means will be approximately normal with a mean of 25 thousand.
The standard deviation of the sample means is:


The z value is 
We plug in the values to get:

The area to the right of 1.87 is
.
The probability that the average number of residents within five miles of each store in a sample of 50 stores will be more than 27.8 thousand is 3.07%
See attachment.
Answer:
Since we can't assume that the distribution of X is the normal then we need to apply the central limit theorem in order to approximate the
with a normal distribution. And we need to check if n>30 since we need a sample size large as possible to assume this.

Based on this rule we can conclude:
a. n = 14 b. n = 19 c. n = 45 d. n = 55 e. n = 110 f. n = 440
Only for c. n = 45 d. n = 55 e. n = 110 f. n = 440 we can ensure that we can apply the normal approximation for the sample mean
for n=14 or n =19 since the sample size is <30 we don't have enough evidence to conclude that the sample mean is normally distributed
Step-by-step explanation:
For this case we know that for a random variable X we have the following parameters given:

Since we can't assume that the distribution of X is the normal then we need to apply the central limit theorem in order to approximate the
with a normal distribution. And we need to check if n>30 since we need a sample size large as possible to assume this.

Based on this rule we can conclude:
a. n = 14 b. n = 19 c. n = 45 d. n = 55 e. n = 110 f. n = 440
Only for c. n = 45 d. n = 55 e. n = 110 f. n = 440 we can ensure that we can apply the normal approximation for the sample mean
for n=14 or n =19 since the sample size is <30 we don't have enough evidence to conclude that the sample mean is normally distributed
Answer:
Step-by-step explanation:
3.14159 is irrational because it's a repeating decimal; it cannot be expressed as the ratio of two integers. All the others can be expressed in that way.
Answer is D
BE
hope it helps