a substance's density is the same at a certain pressure and temperature, and the density of one substance is usually different than another substance.
Question:
A point charge of -2.14uC is located in the center of a spherical cavity of radius 6.55cm inside an insulating spherical charged solid. The charge density in the solid is 7.35×10−4 C/m^3.
a) Calculate the magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity.
Express your answer using two significant figures.
Answer:
The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity 
Explanation:
A point charge ,q =
is located in the center of a spherical cavity of radius ,
m inside an insulating spherical charged solid.
The charge density in the solid , d = 
Distance from the center of the cavity,R =
Volume of shell of charge= V =![(\frac{4\pi}{3})[ R^3 - r^3 ]](https://tex.z-dn.net/?f=%28%5Cfrac%7B4%5Cpi%7D%7B3%7D%29%5B%20R%5E3%20-%20r%5E3%20%5D)
Charge on the shell ,Q = 
![Q =(\frac{4\pi}{3})[ R^3 - r^3 ] \times d](https://tex.z-dn.net/?f=Q%20%3D%28%5Cfrac%7B4%5Cpi%7D%7B3%7D%29%5B%20R%5E3%20-%20r%5E3%20%5D%20%5Ctimes%20d)
![Q = 4.1888\times 10^{-4} [5.76364 ] \times 7.35 \times 10^{-4}](https://tex.z-dn.net/?f=Q%20%3D%204.1888%5Ctimes%2010%5E%7B-4%7D%20%5B5.76364%20%5D%20%5Ctimes%207.35%20%5Ctimes%2010%5E%7B-4%7D)


Electric field at
m due to shell
E1 = 

Electric field at
due to 'q' at center 
E2 =

The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity
= E2- E1
![=[ 2.134 - 1.769 ]\times 10^6](https://tex.z-dn.net/?f=%3D%5B%20%202.134%20%20-%201.769%20%5D%5Ctimes%2010%5E6)

Our team is having a really hard time trying to decode the gibberish
in the question, but they do seem to be picking up a message that
you're in an exam. If that's true, then thank you for taking some of
your precious exam time to greet your many friends on Brainly.
Now turn off your phone and drag your attention back to the exam.
Answer:
$ 1.1
Explanation:
From the question given above, the following data were obtained:
Cost per kWh = $ 0.1
Current (I) = 10 A
Voltage (V) = 220 V
Time (t) = 5 h
Cost of operation =?
Next, we shall determine the power the electric oven. This can be obtained as follow:
Current (I) = 10 A
Voltage = 220 V
Power (P) =?
P = IV
P = 10 × 220
P = 2200 W
Next, we shall convert 2200 W to KW. This can be obtained as follow:
1000 W = 1 KW
Therefore,
2200 W = 2200 W × 1 KW / 1000 W
2200 W = 2.2 KW
Thus, 2200 W is equivalent to 2.2 KW.
Next, we shall determine the energy consumed by the electric oven. This can be obtained as follow:
Power (P) = 2.2 KW
Time (t) = 5 h
Energy (E) =?
E = Pt
E = 2.2 × 5
E = 11 KWh
Finally, we shall determine the cost of operation. This can be obtained as follow:
1 KWh cost $ 0.1
Therefore,
11 KWh will cost = 11 × 0.1
11 KWh will cost = $ 1.1
Therefore, the cost of operating the electric oven is $ 1.1
If it is not exposed to sunlight often... then it might not be able to produce sufficient amounts