Answer:
to locate places on earth
Answer:
[ 2.67 , 1 ] m
Explanation:
Given:-
- The side lengths of the rods are as follows:
a = 4 m , b = 4 m , c = 5 m
a = Base , b = Perpendicular , c = Hypotenuse
- All rods are made of same material with uniform density. With
Find:-
Find the coordinates of the center of mass of the triangle.
Solution:-
- The center of mass of any triangle is at the intersection of its medians.
- So let’s say we have a triangle with vertices at points (0,0) , (a,0) , and (0,b).
- Median from (0,0) to midpoint (a/2,b/2) of opposite side has equation:
bx−ay=0
- Median from (a,0) to midpoint (0,b/2) of opposite side has equation:
bx+2ay=ab
- Median from (0,b) to midpoint (a/2,0) of opposite side has equation:
2bx+ay=ab
- Solve all three equations simultaneously:
bx−ay=0 , bx = ay
ay + 2ay = ab , 3ay = ab , y = b/3
bx = b/3
x = a / 3
- So the distance from the median to each leg of the triangle is 1/3 length of other leg.
- So the coordinates of the centroid for right angle triangle would be:
[ 2a/3 , b/3 ]
[ 2.67 , 1 ] m
A) 1 rev = 2π rad. Using this ratio, you can find the rad/s: 1160 rev/min x 2π rad/rev x 1 min/60 s = 121.5 rad/s
b) You can find linear speed from angular speed using this equation (note the radius is half the diameter given in the question): v = ωr = 121.5 rad/s x 1.175 m = 142.8 m/s
c) You can find centripetal acceleration using this equation: a = v^2/r = (142.8 m/s)^2 / 1.175 m = 17 355 m/s^2
a) It is absolute, so it does not change.
b) Inertial ones.
c) Inside the train the time will slow down relatively to the outside clock. So if one travel at nearly the speed if light for 2 hours on his clock, for outdoor observers it will look like 3 hours.