Answer:
It increases proportionally
Explanation:
The gravitational force between the Earth and an object on its surface is given by

where
G is the gravitational constant
M is the Earth's mass
m is the mass of the object
R is the Earth's radius
In this problem, the Earth's mass is increased, while the diameter (and therefore, the radius) doesn't change. From the equation, we see that the gravitational force is directly proportional to the Earth's mass: therefore, if the mass is increased, the force will increase as well by the same proportion (for example, if the mass is doubled, the force will double as well)
Answer:
Explanation:
The given time is 1 / 4 of the time period
So Time period of oscillation.
= 4 x .4 =1.6 s
When the block reaches back its original position when it came in contact with the spring for the first time , the block and the spring will have maximum
velocity. After that spring starts unstretching , reducing its speed , so block loses contact as its velocity is not reduced .
So required velocity is the maximum velocity of the block while remaining in contact with the spring.
v ( max ) = w A = 1.32 m /s.
Answer:
The correct answer to the following question will be "Period".
Explanation:
The Period seems to be the time deemed necessary for such a perfect cycle of vibration to transfer a particular moment. Because as the amplitude of the wave raises, the wavelength falls.
It is denoted by "T" and its formula will be:
⇒ 
Where, T = Period
F = Frequency
The other given choices are not related to the given circumstances. So that the above would be the right answer.
A spinning wheel
and the blade of a kitchen blender both illustrate rotation.
A child swinging on a swing
illustrates oscillation, or 'harmonic' motion.
A balloon being blown up is an example of dilation or inflation.
A sliding hockey puck demonstrates the concept of translation.
Answer:
The answer is 3.
Explanation:
The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.
So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.
I hope this answer helps.