Answer:
Current = 8696 A
Fraction of power lost =
= 0.151
Explanation:
Electric power is given by

where I is the current and V is the voltage.

Using values from the question,

The power loss is given by

where R is the resistance of the wire. From the question, the wire has a resistance of
per km. Since resistance is proportional to length, the resistance of the wire is

Hence,

The fraction lost = 
Answer:
The value of Cpk is 0.83.
Explanation:
Given that,
Upper specification limits = 10 cm
lower specification limits = 8 cm
Mean = 9.5
Standard deviation = 0.2 cm
We need to calculate the process capability
Using formula of Cpk

Put the value into the formula



Hence, The value of Cpk is 0.83.
The equilibrant force of the two given forces is 14.14 N.
<h3 /><h3 /><h3>What is equilibrant force?</h3>
- This is a single force that balances other given forces.
The given parameters:
- First force, F₁ = 10 N
- Second force, F₂ = 10 N
- Angle between the forces, θ = 90⁰
The equilibrant force of the two given forces is calculated as follows;

Thus, the equilibrant force of the two given forces is 14.14 N.
Learn more about equilibrant force here: brainly.com/question/8045102
Answer:
A. False, frequency can increase or decrease wavelength.
For example: a high frequency would mean there are shorter wavelengths that occur in a period. Meanwhile, a low frequency would indicate that the wavelengths are longer and in longer periods.
Answer:

Explanation:
<u>Charge of an Electron</u>
Since Robert Millikan determined the charge of a single electron is

Every possible charged particle must have a charge that is an exact multiple of that elemental charge. For example, if a particle has 5 electrons in excess, thus its charge is 
Let's test the possible charges listed in the question:
. We have just found it's a possible charge of a particle
. Since 3.2 is an exact multiple of 1.6, this is also a possible charge of the oil droplets
this is not a possible charge for an oil droplet since it's smaller than the charge of the electron, the smallest unit of charge
cannot be a possible charge for an oil droplet because they are not exact multiples of 1.6
Finally, the charge
is four times the charge of the electron, so it is a possible value for the charge of an oil droplet
Summarizing, the following are the possible values for the charge of an oil droplet:
