Answer:
I think frequency not sure though
How frequently a wave or vibration occurs during a span of time, determines the waves frequency. Frequency is the number of waves per unit time. The unit for frequency if a Hertz ( 1/second). The speed a wave travels is the wavelength multiplied by this frequency. The amplitude of a wave is the maximum distance the wave is displaced.
This is a classic example of conservation of energy. Assuming that there are no losses due to friction with air we'll proceed by saying that the total energy mus be conserved.

Now having information on the speed at the lowest point we can say that the energy of the system at this point is purely kinetic:

Where m is the mass of the pendulum. Because of conservation of energy, the total energy at maximum height won't change, but at this point the energy will be purely potential energy instead.

This is the part where we exploit the Energy's conservation, I'm really insisting on this fact right here but it's very very important, The totam energy Em was

It hasn't changed! So inserting this into the equation relating the total energy at the highest point we'll have:

Solving for h gives us:

It doesn't depend on mass!
Hybrid
<u>Hybrid</u> modified the concept by adding an internal combustion engine and marketing hybrids that were part electric and part gas powered.
- The driving wheels of hybrid vehicles receive power from their drivetrains.
- A hybrid car has numerous sources of propulsion.
- There are numerous hybrid configurations.
- A hybrid vehicle might, for instance, get its energy from burning gasoline while alternating between an electric motor and a combustion engine.
- Although they have primarily been employed for rail locomotives, electrical vehicles have a long history of integrating internal combustion and electrical transmission, like in a diesel-electric power-train.
- Because the electric drive transmission directly substitutes the mechanical gearbox rather than serving as an additional source of motive power, a diesel-electric powertrain does not meet the definition of a hybrid.
- Only the electric/ICE hybrid car type was readily accessible on the market as of 2017.
- One type used parallel operation to power both motors at the same time.
- Another ran in series, using one source to supply power solely and the other to supply electricity.
- Either source may act as the main driving force, with the other source serving to strengthen the main.
To learn more about hybrid vehicles visit:
brainly.com/question/14610495
#SPJ4
A.) is chemical, B.) is physical, C.) is physical, D.) is chemical, E.) is physical, F.) is physical, G.) is physical, and H.) is chemical.