Answer:
18.62 m/s
Explanation:
Given that:
A liquid with a density of 900 kg/m 3 is stored in a pressurized, closed storage tank.
Diameter of the tank = 10 m
The absolute pressure in the tank above the liquid is 200 kPa = 200, 000 Pa
At pressure of 200 kPa ; the final velocity = 0
Atmospheric pressure at 5cm = 101325 Pa
We are to calculate the initial velocity of a fluid jet when a 5cm diameter orifice is opened at point A?
By using Bernoulli's theorem between the shaded portion in the diagram;
we have:




where;
Pa = atmospheric pressure = 101325 Pa
= density of liquid = 900 kg/m³
= initial velocity = ???
g = 9.8 m/s²
= height of the hole from the buttom
= height of the liquid surface from the button


Thus, the initial velocity of the fluid jet = 18.62 m/s
Answer:
The minimum difference between the lengths of the two tubes should be 0.385 meters.
Explanation:
As we known that for any two waves to arrive in phase at any point the difference in the path traveled by the waves should be an integral multiple of the wavelength of the wave.
Mathematically we can write:

For the given wave we have

Applying values we get

Thus the minimum difference in the lengths of the tubes can be obtained by putting the value of n = 1

<span>Yes, the vast majority of an atom is indeed empty space. Most of it's mass is centered in the nucleus. Flying around the nucleus are the electrons, but they're very very far away (on an atomic level anyway). Most of the atom is the space between the nucleus and the electrons.</span>