Answer:
C - 50,000 * 77 * 3
Explanation:
At the top of the hill the potential energy is E= mgh= (160 kg)(9.81 m s^-2)(30 m)= 47088
hope it helps ,
<u>help me by marking as brainliest....</u>
Answer:
0.25 m.
Explanation:
We'll begin by calculating the spring constant of the spring.
From the diagram, we shall used any of the weight with the corresponding extention to determine the spring constant. This is illustrated below:
Force (F) = 0.1 N
Extention (e) = 0.125 m
Spring constant (K) =?
F = Ke
0.1 = K x 0.125
Divide both side by 0.125
K = 0.1/0.125
K = 0.8 N/m
Therefore, the force constant, K of spring is 0.8 N/m
Now, we can obtain the number in gap 1 in the diagram above as follow:
Force (F) = 0.2 N
Spring constant (K) = 0.8 N/m
Extention (e) =..?
F = Ke
0.2 = 0.8 x e
Divide both side by 0.8
e = 0.2/0.8
e = 0.25 m
Therefore, the number that will complete gap 1is 0.25 m.
Answer:
–77867 m/s/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
Acceleration is simply defined as the rate of change of velocity with time. Mathematically, it is expressed as:
Acceleration = (final velocity – Initial velocity) /time
a = (v – u) / t
With the above formula, we can obtain acceleration of the ball as follow:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
a = (v – u) / t
a = (–23.9 – 34.5) / 0.00075
a = –58.4 / 0.00075
a = –77867 m/s/s
Thus, the acceleration of the ball is –77867 m/s/s.
Answer:
sweeps out equal areas in equal times.
Explanation:
As we know that there is no torque due to Sun on the planets revolving about the sun
so we will have

now we have

now we also know that

so rate of change in area is given as

so we will have


since angular momentum and mass is constant here so
all planets sweeps out equal areas in equal times.