Answer: 0.42 Amperes
Explanation:
Given that:
Current, I = ?
Electric charge Q = 100 coulomb
Time, T = 4.0 minutes
(The SI unit of time is seconds. so, convert 4.0 minutes to seconds)
If 1 minute = 60 seconds
4.0 minutes = 4.0 x 60 = 240 seconds
Since electric charge, Q = current x time
i.e Q = I x T
100 coulomb = I x 240 seconds
I = 100 coulomb / 240 seconds
I = 0.4167 Amperes (round to the nearest hundredth which is 0.42 amperes)
Thus, 0.42 Amperes of current flows in the circuit.
Answer:
in co2 there is one atom of carbon
Explanation:
Answer:
V = 331.59m/s
Explanation:
First we need to calculate the time taken for the shell fire to hit the ground using the equation of motion.
S = ut + 1/2at²
Given height of the cliff S = 80m
initial velocity u = 0m/s²
a = g = 9.81m/s²
Substitute
80 = 0+1/2(9.81)t²
80 = 4.905t²
t² = 80/4.905
t² = 16.31
t = √16.31
t = 4.04s
Next is to get the vertical velocity
Vy = u + gt
Vy = 0+(9.81)(4.04)
Vy = 39.6324
Also calculate the horizontal velocity
Vx = 1330/4.04
Vx = 329.21m/s
Find the magnitude of the velocity to calculate speed of the shell as it hits the ground.
V² = Vx²+Vy²
V² = 329.21²+39.63²
V² = 329.21²+39.63²
V² = 108,379.2241+1,570.5369
V² = 109,949.761
V = √ 109,949.761
V = 331.59m/s
Hence the speed of the shell as it hits the ground is 331.59m/s
Electricity is a term used to describe the energy produced (usually to perform work) when electrons are caused to directional (not randomly) flow from atom to atom. ... This movement of electrons between atoms is called electrical current.