Answer:
- The gravity does a work of - 117.6 Joules.
- The tension does not do work as the force is perpendicular to the direction of motion at any point in the trajectory.
Explanation:
The work done by the gravity simply is the difference in gravitational potential energy multiplied by -1:

where m is the mass of the ball, g is the acceleration due to gravity,
is the final height and
is the initial height.
So, if the radius is 2.00 m, then the difference of height will be 4 meters:



As the tension is perpendicular to the velocity of the ball, the force is always perpendicular to the direction of motion. So, the differential of work will be:

The cat has two directions of motions:
The horizontal motion = Dx = 2.2 m
The vertical motion = Dy = -1.3 m (negative sign indicates that the cat is falling)
a = 9.8 m/sec^2
Vy = zero (since you are not moving up)
From the laws of motion:
<span>Dy = Vyt + 0.5ayt^2
</span>-1.3 = 0(t) + 0.5(-9.8)t^2
<span>t = 0.52s
</span>
Then, again using the laws of motion (but for the horizontal direction this time)
Dx = Vxt
<span>2.2 = Vx0.52 </span>
<span>Vx = 2.2/0.52 </span>
<span>= 4.23 m/s
</span>
<span>Therefore the cat's speed when it slid off the table is 4.23 m/s horizontally.</span>
Answer:
Sound is produced when an object vibrates, creating a pressure wave.
Explanation:
This pressure wave causes particles in the surrounding medium (air, water, or solid) to have vibrational motion. ... The human ear detects sound waves when vibrating air particles vibrate small parts within the ear.
As we know that KE and PE is same at a given position
so we will have as a function of position given as

also the PE is given as function of position as

now it is given that
KE = PE
now we will have




so the position is 0.707 times of amplitude when KE and PE will be same
Part b)
KE of SHO at x = A/3
we can use the formula

now to find the fraction of kinetic energy



now since total energy is sum of KE and PE
so fraction of PE at the same position will be

