The second stone hits the ground exactly one second after the first.
The distance traveled by each stone down the cliff is calculated using second kinematic equation;

where;
- <em>t is the time of motion </em>
- <em />
<em> is the initial vertical velocity of the stone = 0</em>

The time taken by the first stone to hit the ground is calculated as;

When compared to the first stone, the time taken by the second stone to hit the ground after 1 second it was released is calculated as


Thus, we can conclude that the second stone hits the ground exactly one second after the first.
"<em>Your question is not complete, it seems be missing the following information;"</em>
A. The second stone hits the ground exactly one second after the first.
B. The second stone hits the ground less than one second after the first
C. The second stone hits the ground more than one second after the first.
D. The second stone hits the ground at the same time as the first.
Learn more here:brainly.com/question/16793944
Answer:
Sledgehammer A has more momentum
Explanation:
Given:
Mass of Sledgehammer A = 3 Kg
Swing speed = 1.5 m/s
Mass of Sledgehammer B = 4 Kg
Swing speed = 0.9 m/s
Find:
More momentum
Computation:
Momentum = mv
Momentum sledgehammer A = 3 x 1.5
Momentum sledgehammer A = 4.5 kg⋅m/s
Momentum sledgehammer B = 4 x 0.9
Momentum sledgehammer B = 3.6 kg⋅m/s
Sledgehammer A has more momentum
It is 2.) Cut the DNA into fragments
- Gravitational force depends only on mass and distance, not on the state of matter.
- The forces of attraction between molecules in matter are electromagnetic in nature, not gravitational.
- These attractive forces are stronger in a solid than in a liquid than in a gas.
- Gravitational forces between molecules is completely negligible compared to the em forces.
So, key answer is inter-molecular forces of solids is stronger than liquids.