Answer:
4.7 N
Explanation:
130 g = 0.13 kg
The momentum of the snowball when it's thrown at the wall is

Which is also the impulse. From here we can calculate the magnitude of the average force F knowing the duration of the collision is 0.18 s



Answer:
required distance is 233.35 m
Explanation:
Given the data in the question;
Sound intensity
= 1.62 × 10⁻⁶ W/m²
distance r = 165 m
at what distance from the explosion is the sound intensity half this value?
we know that;
Sound intensity
is proportional to 1/(distance)²
i.e
∝ 1/r²
Now, let r² be the distance where sound intensity is half, i.e
₂ =
₁/2
Hence,
₂/
₁ = r₁²/r₂²
1/2 = (165)²/ r₂²
r₂² = 2 × (165)²
r₂² = 2 × 27225
r₂² = 54450
r₂ = √54450
r₂ = 233.35 m
Therefore, required distance is 233.35 m
It's a bit of a trick question, had the same one on my homework. You're given an electric field strength (1*10^5 N/C for mine), a drag force (7.25*10^-11 N) and the critical info is that it's moving with constant velocity(the particle is in equilibrium/not accelerating).
<span>All you need is F=(K*Q1*Q2)/r^2 </span>
<span>Just set F=the drag force and the electric field strength is (K*Q2)/r^2, plugging those values in gives you </span>
<span>(7.25*10^-11 N) = (1*10^5 N/C)*Q1 ---> Q1 = 7.25*10^-16 C </span>
Answer:
area = 5733.33 cm²
length = 5.47 ×
cm
Explanation:
Given data
density = 19.32 g/cm³
mass = 33.16 g
thickness = 3.000 µm = 3 ×
cm
radius r = 1.000 µm = 1 ×
cm
to find out
area of the leaf and length of the fiber
solution
we know volume formula that is
volume = mass / density
volume = 33.16 / 19.32
volume = 1.72 cm³
we know that volume = thickness × area
so area
area = volume / thickness
area = 1.72 / 3 ×
area = 5733.33 cm²
and
we know volume = πr²L
so L = volume / πr²
length = 1.72 / π(1×
)²
length = 5.47 ×
cm
Answer:
value of heat is 18 J
2. step by step
formular w=p(volume1-volume2)
w= 1.0×10^5(0.0006-0.0004)
w= 40 J