A) The resultant force is 30.4 N at 
B) The resultant force is 18.7 N at 
Explanation:
A)
In order to find the resultant of the two forces, we must resolve each force along the x- and y- direction, and then add the components along each direction to find the components of the resultant.
The two forces are:
at
above x-axis
at
above y-axis
Resolving each force:


So, the components of the resultant are:

And the magnitude of the resultant is:

And the direction is:

B)
In this case, the 15 N is applied in the opposite direction to the 20 N force. Therefore we need to re-calculate its components, keeping in mind that the angle of the 15 N force this time is

So we have:

So, the components of the resultant this time are:

And the magnitude is:

And the direction is:

Learn more about vector addition:
brainly.com/question/4945130
brainly.com/question/5892298
#LearnwithBrainly
Answer:
I_weight = M L²
this value is much larger and with it it is easier to restore balance.I
Explanation:
When man walks a tightrope, he carries a linear velocity, this velocity is related to the angular velocity by
v = w r
For man to maintain equilibrium needs the total moment to be zero
∑τ = I α
S τ = 0
The forces on the home are the weight of the masses, the weight of the man and the support on the rope, the latter two are zero taque the distance to the center of rotation is zero.
Therefore the moment of the masses and the open is the one that must be zero.
If the man carries only the bar, we could approximate it by two open one on each side of the axis of rotation formed by the free of the rope
I = ⅓ m L² / 4
As the length of half the length of the bar and the mass of the bar is small, this moment is small, therefore at the moment if there is some imbalance it is difficult to recover.
If, in addition to the opening, each of them carries a specific weight, the moment of inertia of this weight is
I_weight = M L²
this value is much larger and with it it is easier to restore balance.
A)conversion I think, it is if I'm wrong, sorry
Answer:
B will Be Your Best Choice Have a nice day
The average speed in m/s of a person that jogs eight complete laps around a 400m track in a total time of 15.1 min is 0.44m/s.
<h3>How to calculate average speed?</h3>
Average speed of a moving body can be calculated by dividing the distance moved by the time taken.
Average speed = Distance ÷ time
According to this question, a person jogs eight complete laps around a 400m track in a total time of 15.1 min. The average speed is calculated as follows:
15.1 minutes in seconds is as follows = 906 seconds
Average speed = 400m ÷ 906s
Average speed = 0.44m/s
Therefore, the average speed in m/s of a person that jogs eight complete laps around a 400m track in a total time of 15.1 min is 0.44m/s.
Learn more about average speed at: brainly.com/question/12322912
#SPJ1