Answer:
Notice that the number of atoms of
K
and
Cl
are the same on both sides, but the numbers of
O
atoms are not. There are 3
O
atoms on the the left side and 2 on the right. 3 and 2 are factors of 6, so add coefficients so that there are 6
O
atoms on both sides.
2KClO
3
(
s
)
+ heat
→
KCl(s)
+
3O
2
(
g
)
Now the
K
and
Cl
atoms are not balanced. There are 2 of each on the left and 1 of each on the right. Add a coefficient of 2 in front of
KCl
.
2KClO
3
(
s
)
+ heat
→
2KCl(s)
+
3O
2
(
g
)
The equation is now balanced with 2
K
atoms,
increases my factor of 10
The 3-dimensional orientation of a sublevel is known as atomic orbital.
In quantum mechanics, Atomic orbitals are locations around an atom's nucleus where electrons are most likely to be at any particular time(specific orbits). These specific orbits exist in levels and can be broken down into sublevels.
Each sublevel has an orbital and it is oriented differently in 3-dimensional space.
The atomic orbital is a mathematical function that depicts how one or two electrons in an atom behave as seen in waves.
Learn more about atomic orbitals here:
brainly.com/question/1832385
Answer:
Na₁₁ = 1s² 2s² 2p⁶ 3s¹
Explanation:
Sodium is present in group 1.
It is alkali metal.
It has one valence electron.
The atomic number of sodium is 11.
Its atomic mass is 23 amu.
The longhand notation of electronic configuration of sodium can be written as,
Na₁₁ = 1s² 2s² 2p⁶ 3s¹
The electronic configuration in shorthand notation( noble gas) would be written as,
Na₁₁ = [Ne] 3s¹
Sodium loses its one valence electron to complete the octet and get stable thus form +1 cation.
It react with halogen and form salt. Such as sodium chloride.
2Na + Cl₂ → 2NaCl