Explanation:
The given data is as follows.
= 286 kJ = 
= 286000 J
,

Hence, formula to calculate entropy change of the reaction is as follows.

= ![[(\frac{1}{2} \times S_{O_{2}}) - (1 \times S_{H_{2}})] - [1 \times S_{H_{2}O}]](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20S_%7BO_%7B2%7D%7D%29%20-%20%281%20%5Ctimes%20S_%7BH_%7B2%7D%7D%29%5D%20-%20%5B1%20%5Ctimes%20S_%7BH_%7B2%7DO%7D%5D)
= ![[(\frac{1}{2} \times 205) + (1 \times 131)] - [(1 \times 70)]](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20205%29%20%2B%20%281%20%5Ctimes%20131%29%5D%20-%20%5B%281%20%5Ctimes%2070%29%5D)
= 163.5 J/K
Therefore, formula to calculate electric work energy required is as follows.
= 
= 237.277 kJ
Thus, we can conclude that the electrical work required for given situation is 237.277 kJ.
The Relative Formula Mass of NaH2PO4 is 120 g/mol
Therefore, the number of moles = 6.6/120
= 0.055 moles of NaH2PO4 which is also equal to the number of moles of H2PO4.
[H2PO4-] = Number of moles oof H2PO4-/Volume of the solution in L
= 0.055/ ( 355 ×10^-3)
= 0.155 M
Na2HPO4 undergoes complete dissociation as follows;
Na2HPO4 (aq)= 2Na+ (aq) + HPO4^2- (aq)
1 mole of Na2HPO4 = 142 g/mol
Therefore; number of moles = 8.0/142
= 0.0563 moles
[HPO4 ^-2] is given by no of moles HPO4^2- /volume of the solution in L
= 0.0563/(355×10^-3)
= 0.1586 M
Both H2PO4^2- and HPO4^2- are weak acids the undergoes partial dissociation
Ka of H2PO4- = 6.20 × 10^-8
[H+] =Ka*([H2PO4-]/[HPO4(2-)]
= (6.20 ×10^-8)×(0.155/0.1586)
= 6.059 ×10^-8 M
pH = - log[H+]
= - log (6.059×10^-8)
= 7.218
Answer:
I think the answer is true, sorry if I am wrong
Explanation:
Answer:
4Hg+2O2=4HgO
four Mercury + four oxygen
<h2>Answer:</h2>
Arrangement of inter molecular forces from strongest to weakest.
- Hydrogen bonding
- Dipole-dipole interactions
- London dispersion forces.
<h3>Explanation:</h3>
Intermolecular forces are defined as the attractive forces between two molecules due to some polar sides of molecules. They can be between nonpolar molecules.
Hydrogen bonding is a type of dipole dipole interaction between the positive charge hydrogen ion and the slightly negative pole of a molecule. For example H---O bonding between water molecules.
Dipole dipole interactions are also attractive interactions between the slightly positive head of one molecule and the negative pole of other molecules.
But they are weaker than hydrogen bonding.
London dispersion forces are temporary interactions caused due to electronic dispersion in atoms of two molecules placed together. They are usually in nonpolar molecules like F2, I2. they are weakest interactions.