Down 6
Left 1
I think hope it helps tho
Answer:
Step-by-step explanation:
x
2
+
x
−
6
=
(
x
+
3
)
(
x
−
2
)
x
2
−
3
x
−
4
=
(
x
−
4
)
(
x
+
1
)
Each of the linear factors occurs precisely once, so the sign of the given rational expression will change at each of the points where one of the linear factors is zero. That is at:
x
=
−
3
,
−
1
,
2
,
4
Note that when
x
is large, the
x
2
terms will dominate the values of the numerator and denominator, making both positive.
Hence the sign of the value of the rational expression in each of the intervals
(
−
∞
,
−
3
)
,
(
−
3
,
−
1
)
,
(
−
1
,
2
)
,
(
2
,
4
)
and
(
4
,
∞
)
follows the pattern
+
−
+
−
+
. Hence the intervals
(
−
3
,
−
1
)
and
(
2
,
4
)
are both part of the solution set.
When
x
=
−
1
or
x
=
4
, the denominator is zero so the rational expression is undefined. Since the numerator is non-zero at those values, the function will have vertical asymptotes at those points (and not satisfy the inequality).
When
x
=
−
3
or
x
=
2
, the numerator is zero and the denominator is non-zero. So the function will be zero and satisfy the inequality at those points.
Hence the solution is:
x
∈
[
−
3
,
−
1
)
∪
[
2
,
4
)
graph{(x^2+x-6)/(x^2-3x-4) [-10, 10, -5, 5]}
Answer:
Step-by-step explanation:
if you're saying she ran .2 miles in 12 hours
then she ran .016 miles per hour
if you're saying she ran 2 miles in 12 hours,
then she ran 1/3 mile per hour or 0.3333 miles per hour
We can find critical value by using t - table.
For using t - table we need degree of freedom and alpha either for two tailed test or one tailed test.
We can determine degree of freedom by subtracting sample size from one.
So in given question sample size is 23. So we can say degree of freedom(df) for sample size 23 is
df = 23 - 1= 22
Now we have to go on row for degree of freedom 22.
After that we need to find alpha either for two tailed test or one tailedl test.
Confidence level is 99%. We can convert it into decimal as 0.99.
So alpha for two tailed test is 100 - 0.99 = 0.01
Alpha for one tailed test is 0.01/2 = 0.005.
So we will go on column for 0.01 for two tailed test alpha or 0.005 for one tailed test alpha.
SO the critical value 22 degree of freedom and 0.01 two tailed alpha is 2.819 from t - table.