Answer:
x - 7 = 65
(x is rhonda's score)
Step-by-step explanation:
Answer:

Step-by-step explanation:

Let's substitute the first equation into the second one.

- Multiply by
and bring all the terms to one side.
I'll use my graphical calculator to solve this but you could factor:
(All rounded to 2 decimal places)
Now we can substitute these
values into an equation for
.


Just measure the width (or height, if you'll be stacking the pennies
a mile high) of a penny, then divide 5280 feet by whatever you find.
This is a great activity for a class, and in fact a good way to start
the project. First take one penny, and work out an answer. Then get
100 pennies, and measure them; do the same calculation to see how many
pennies it will take to make a mile. There will probably be a
difference, because you can measure 100 pennies more accurately than a
single penny. Or maybe you have a micrometer that will measure one
penny precisely. Which is better can be a good discussion starter. And
don't forget to try it in metric, too.
Just to illustrate, using a very rough estimate of a penny's width,
let's say a penny is about 3/4 inch wide. The number of pennies in a
mile will be
5280 ft 12 in 1 penny
1 mile * ------- * ----- * ------- = 5280 * 12 * 4/3 pennies
1 mi 1 ft 3/4 in
This gives about 84,480 pennies. (This method of doing calculations
with units is very helpful, and would be worth teaching.)
If we measure 100 pennies as 6 ft 1 in, we will get
5280 ft 100 pennies
1 mile * ------- * ----------- = 5280 * 100 * 12 / 73 pennies
1 mi 6 1/12 ft
This gives us 86794.5205 pennies in a mile.
The expression cos240 degrees is equivalent to cos120 degrees
Answer:
(x) = 2(1/6)^x
Step-by-step explanation:
To easily solve this problem, we can graph each option using a graphing calculator, or any equation plotting tool.
Case 1
f(x) = 2(6)^x
Case 2
f(x) = 1/2*(6)^x
Case 3
f(x) = 2(1/6)^x
Case 4
f(x) = 1/2*(1/6)^x
By looking at the pictures below, we can tell that the correct option is
Case 3
f(x) = 2(1/6)^x
Since the stretch is done by a factor of 2