f(x) cannot be 0 or less than zero, but can approach+ infinity
Answer is (0, ∞)
Using the z-distribution, the 99% confidence interval to estimate the population proportion is: (0.2364, 0.4836).
<h3>What is a confidence interval of proportions?</h3>
A confidence interval of proportions is given by:

In which:
is the sample proportion.
In this problem, we have a 99% confidence level, hence
, z is the value of Z that has a p-value of
, so the critical value is z = 2.575.
The estimate and the sample size are given by:
.
Then the bounds of the interval are:
The 99% confidence interval to estimate the population proportion is: (0.2364, 0.4836).
More can be learned about the z-distribution at brainly.com/question/25890103
#SPJ1
Answer:
a. The mean would be 0.067
The standard deviation would be 0.285
b. Would be of 1-e∧-375
c. The probability that both of them will be gone for more than 25 minutes is 1-e∧-187.5
d. The likelihood of at least of one of the taxis returning within 25 is 1-e∧-375
Step-by-step explanation:
a. According to the given data the mean and the standard deviation would be as follows:
mean=1/β=1/15=0.0666=0.067
standard deviation=√1/15=√0.067=0.285
b. To calculate How likely is it for a particular trip to take more than 25 minutes we would calculate the following:
p(x>25)=1-p(x≤25)
since f(x)=p(x≤x)=1-e∧-βx
p(x>25)=1-p(x≤25)=1-e∧-15x25=1-e∧-375
c. p(x>25/2)=1-p(x≤25/2)=1-e∧-15x25/2=1-e∧-187.5
d. p(x≥25)=1-e∧-15x25=1-e∧-375
68.32 divided by 2.8 is 24.4. I hope this helps!
(g-f)(x) is x² - 3x - 6
<u>Step-by-step explanation:</u>
Step 1:
Given g(x) = x² - 1 - 2x, f(x) = x + 5. Find (g-f)(x)
(g-f)(x) = x² - 2x - 1 - (x + 5) = x² - 2x - 1 - x - 5 = x² - 3x - 6