Answer:
Since valence shells are mostly empty in nonmetal atoms, the atoms attract and hold any electrons they can in order to fill their valence shells.
Answer:
The value of Q must be less than that of K.
Explanation:
The difference of K and Q can be understood with the help of an example as follows
A ⇄ B
In this reaction A is converted into B but after some A is converted , forward reaction stops At this point , let equilibrium concentration of B be [B] and let equilibrium concentration of A be [A]
In this case ratio of [B] and [A] that is
K = [B] / [A] which is called equilibrium constant.
But if we measure the concentration of A and B ,before equilibrium is reached , then the ratio of the concentration of A and B will be called Q. As reaction continues concentration of A increases and concentration of B decreases. Hence Q tends to be equal to K.
Q = [B] / [A] . It is clear that Q < K before equilibrium.
If Q < K , reaction will proceed towards equilibrium or forward reaction will
proceed .
Answer:
look at the photo........................
Hello!
First, we need to determine the pKa of the base. It can be found applying the following equation:

Now, we can apply the
Henderson-Hasselbach's equation in the following way:
![pH=pKa+log( \frac{[CH_3NH_2]}{[CH_3NH_3Cl]} )=10,65+log( \frac{0,18M}{0,73M} )=10,04](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%20%5Cfrac%7B%5BCH_3NH_2%5D%7D%7B%5BCH_3NH_3Cl%5D%7D%20%29%3D10%2C65%2Blog%28%20%5Cfrac%7B0%2C18M%7D%7B0%2C73M%7D%20%29%3D10%2C04)
So,
the pH of this buffer solution is 10,04Have a nice day!