<span>In the Bohr model electrons in atoms can occupy allowed orbits where they do not emit energy. Exchange of energy with the surrounding environment occurs only when an electron "jumps" from an orbit to another. Hope this answers the question. Have a nice day.</span>
Boiling point<span> is the </span>temperature<span> at which the vapor pressure of the liquid equals the surrounding pressure.
Above boiling point point, liquid get converted into vapour.
Now, boiling point of water is 100 oC at room pressure. Room pressure is equal to 760 torr. Thus, at 100 oC, vapour pressure of water becomes equal to 760 torr.
Now, if external pressure is increased to 880 torr, more heat is to be supplied so that vapour pressure of water equals 880 torr.
So, at 880 torr, boiling point of water will be more than 100 oC. In present case, most like the boiling point of water is equal to 105 oC.
</span>
Answer:
See explanation
Explanation:
In Bohr's theory, electrons are found in specific regions in space called orbits. These orbits are also called energy levels. An electron may move from one energy level to another by absorbing or emitting energy.
In the wave mechanical model, electrons are not found in a particular region in space according to Heisenberg's uncertainty principle.
We rather define a certain region in space where there is a high probability of locating the electron. This region in space where there is a high probability of locating the electron is called an orbital.
Hence, in the Bohr's model of the atom,electrons can surely be found in orbits while in the wave mechanical model, the orbital is a probability function that describes a region in space where an electron may be found.