Explanation:
The electrical force between two objects is given by the formula as follows :

k is electrostatic constant
q₁ and q₂ are electric charges
d is distance between charges
So, the two force between two charged objects depends on the product of charges and distance between charges.
Answer: 
Explanation:
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here iron is having an oxidation state of +3 called as
cation and oxide
is an anion with oxidation state of -2. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral
.
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.

If the glasses and glove were wrong then I would chose the fire extinguisher and the power source should be the correct answer.
That's just what I would do though.
Answer:

Explanation:
Hello!
In this case, since we know the balanced chemical reaction, we are first able to realize there is a 1:3 mole ratio between zinc phosphate and zinc chloride; it means that we can first compute the moles of the desired product via stoichiometry:

Next, since those moles are associated with the theoretical yield of zinc chloride, we obtain the corresponding mass:

Finally, we compute the percent yield by diving the actual yield (18 g) by the theoretical yield:

Best regards!
Answer:
424 mol
Explanation:
Step 1: Given data
Number of atoms of Neon: 2.55 × 10²⁶ atoms
Step 2: Calculate the number of moles corresponding to 2.55 × 10²⁶ atoms of Neon
In order to convert atoms into moles, we need a conversion factor, which is Avogadro's number: there are 6.02 × 10²³ atoms of Neon in 1 mole of atoms of Neon.
2.55 × 10²⁶ atoms × (1 mol/6.02 × 10²³ atoms) = 424 mol