1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dem82 [27]
3 years ago
13

If gain of the critically damped system is increased, the system will behave as a) Under damped b) Over damped c) Critically dam

ped d) Oscillatory
Engineering
1 answer:
Ganezh [65]3 years ago
7 0

Answer:

a) Under damped

Explanation:

Given that system is critically damped .And we have to find out the condition when gain is increased.

As we know that damping ratio given as follows

\zeta =\dfrac{C}{C_c}

Where C is the damping coefficient and Cc is the critical damping coefficient.

C_c=2\sqrt{mK}

So from above we can say that

\zeta =\dfrac{C}{2\sqrt{mK}}

\zeta \alpha \dfrac{1}{\sqrt K}

From above relationship we can say when gain (K) is increases then system will become under damped system.

You might be interested in
Only an outer panel is being replaced. Technician A says that removing the spot welds by drilling through both panels allows the
Angelina_Jolie [31]

Answer:

6e66363636633747747363637737373737337374

5 0
3 years ago
2. A F-22 Raptor has just climbed through an altitude of 9,874 m at 1,567 kph when a disk
BabaBlast [244]

The pressure difference across the sensor housing will be "95 kPa".

According to the question, the values are:

Altitude,

  • 9874

Speed,

  • 1567 kph

Pressure,

  • 122 kPa

The temperature will be:

→ T = 15.04-[0.00649(9874)]

→     = 15.04-64.082

→     = -49.042^{\circ} C

now,

→ P_o = 101.29[\frac{(-49.042+273.1)}{288.08} ]^{(5.256)}

→      = 27.074

hence,

→ The pressure differential will be:

= 122-27

= 95 \ kPa

Thus the above solution is correct.

Learn more about pressure difference here:

brainly.com/question/15732832

3 0
3 years ago
A system consists of a disk rotating on a frictionless axle
kakasveta [241]

The system includes a disk rotating on a frictionless axle and a bit of clay transferring towards it, as proven withinside the determine above.

<h3>What is the angular momentum?</h3>

The angular momentum of the device earlier than and after the clay sticks can be the same.

Conservation of angular momentum the precept of conservation of angular momentum states that the whole angular momentum is usually conserved.

  1. Li = Lf where;
  2. li is the preliminary second of inertia
  3. If is the very last second of inertia
  4. wi is the preliminary angular velocity
  5. wf is the very last angular velocity
  6. Li is the preliminary angular momentum
  7. Lf is the very last angular momentum

Thus, the angular momentum of the device earlier than and after the clay sticks can be the same.

Read more about the frictionless :

brainly.com/question/13539944

#SPJ4

8 0
2 years ago
A plane, opaque, surface M has the following properties: gray, diffuse, absorptivity = 0.7, surface area = 0.5 m2 , temperature
BaLLatris [955]

Answer:

The rate of energy absorbed per unit time is 3500W.

Explanation:

From the question, we were given the following parameters;

Plane, opaque, gray, diffuse surface

â = 0.7

Surface area, A = 0.5m²

Incoming radiant energy, G = 10000w/m²

T = 500°C

Rate of energy absorbed is âAG;

âAG = 0.7 × 0.5 × 10000

âAG = 3500W.

The energy absorbed is measured in watts and denoted by the symbol W.

7 0
3 years ago
Kerosene flows through 3/4 standard type K drawn copper tube. The pressure drop measured at two points 50 m apart is 130 kPa. De
Anettt [7]

Answer:

Q=4.98\times 10^{-3}\ m^3/s

Explanation:

Given that

L= 50 m

Pressure drop = 130 KPa

For Copper tube is 3/4 standard type K drawn tube

Outside diameter=22.22 mm

Inside diameter=18.92 mm

Dynamic viscosity for kerosene

\mu =0.00164\ Pa.s

Pressure difference given as

\Delta P=\dfrac{128\mu QL}{\pi d_i^4}

Where

L is length of tube

μ is dynamic viscosity

Q is volume flow rate

d is inner diameter of tube

ΔP is pressure drop

Now by putting the values

\Delta P=\dfrac{128\mu QL}{\pi d_i^4}

130\times 1000=\dfrac{128\times 0.00164\times 50\times Q}{\pi\times 0.0189^4}

Q=4.98\times 10^{-3}\ m^3/s

So flow rate is Q=4.98\times 10^{-3}\ m^3/s

7 0
3 years ago
Other questions:
  • Create a function (prob3_5) that will take inputs of vectors x and y in feet, scalar N, scalars L and W in feet and scalars T1 a
    6·1 answer
  • Due at 11:59pm please help
    14·1 answer
  • The air contained in a room loses heat to the surroundings at a rate of 50 kJ/min while work is supplied to the room by computer
    11·2 answers
  • What is the major drawback to use whiskers as a dispersed agents in composites? a)- High price b)- Large length to diameter rati
    7·1 answer
  • Air is compressed in an isentropic process from an initial pressure and temperature of P1 = 90 kPa and T1=22°C to a final pressu
    7·1 answer
  • A local surf report provides the height of the wave from the trough to the crest of the wave. How does this relate to the wave’s
    11·1 answer
  • By using a book of the OHS Act, Act 85 of 1993, find the act or regulation where the following extraction comes from "every empl
    12·1 answer
  • What information in drawing's title block identifies the project?
    12·1 answer
  • Why the power factor is Low in no load test in induction motor ?​
    13·1 answer
  • The example of using biotechnology in heart surgery is used to illustrate which of the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!