Scrap tire management is primarily regulated at the state level.
Explanation:
Sum of forces in the x direction:
∑Fx = ma
Rx − 250 N = 0
Rx = 250 N
Sum of forces in the y direction:
∑Fy = ma
Ry − 120 N − 300 N = 0
Ry = 420 N
Sum of forces in the z direction:
∑Fz = ma
Rz − 50 N = 0
Rz = 50 N
Sum of moments about the x axis:
∑τx = Iα
Mx + (-50 N)(0.2 m) + (-120 N)(0.1 m) = 0
Mx = 22 Nm
Sum of moments about the y axis:
∑τy = Iα
My = 0 Nm
Sum of moments about the z axis:
∑τz = Iα
Mz + (250 N)(0.2 m) + (-120 N)(0.16 m) = 0
Mz = -30.8 Nm
Answer:
composition of alpha phase is 27% B
Explanation:
given data
mass fractions = 0.5 for both
composition = 57 wt% B-43 wt% A
composition = 87 wt% B-13 wt% A
solution
as by total composition Co = 57 and by beta phase composition Cβ = 87
we use here lever rule that is
Wα = Wβ ...............1
Wα = Wβ = 0.5
now we take here left side of equation
we will get
= 0.5
= 0.5
solve it we get
Ca = 27
so composition of alpha phase is 27% B
The x-ray beam's penetrating power is regulated by kVp (beam quality). Every time an exposure is conducted, the x-rays need to be powerful (enough) to sufficiently penetrate through the target area.
<h3>How does kVp impact the exposure to digital receptors?</h3>
The radiation's penetration power and exposure to the image receptor both increase as the kVp value is raised.
<h3>Exposure to the image receptor is enhanced with an increase in kVp, right?</h3>
Due to an increase in photon quantity and penetrability, exposure at the image receptor rises by a factor of five of the change in kVp, doubling the intensity at the detector with a 15% change in kVp.
To know more about kVp visit:-
brainly.com/question/17095191
#SPJ4