Answer:
f = 5.3 Hz
Explanation:
To solve this problem, let's find the equation that describes the process, using Newton's second law
∑ F = ma
where the acceleration is
a =
B- W = m \frac{d^2 y}{dt^2 }
To solve this problem we create a change in the reference system, we place the zero at the equilibrium point
B = W
In this frame of reference, the variable y' when it is oscillating is positive and negative, therefore Newton's equation remains
B’= m
the thrust is given by the Archimedes relation
B = ρ_liquid g V_liquid
the volume is
V = π r² y'
we substitute
- ρ_liquid g π r² y’ = m \frac{d^2 y'}{dt^2 }

this differential equation has a solution of type
y = A cos (wt + Ф)
where
w² = ρ_liquid g π r² /m
angular velocity and frequency are related
w = 2π f
we substitute
4π² f² = ρ_liquid g π r² / m
f = 
calculate
f = 
f = 5.3 Hz
Explanation:
A charge alters the space around it. This alteration of space is called the electric field. It is also defined as the electric force acting on a charged particle per unit test charge. It is given by :

Where
F is the electric force, 
The direction of electric field is in the direction of electric force. For a positive charge, the direction of electric field lines are outwards and for a negative charge, the direction of field lines are inwards.
Hence, the correct option is (c) "electric field".
Answer:
Explanation:
Given
1 mole of perfect, monoatomic gas
initial Temperature


Work done in iso-thermal process
=initial pressure
=Final Pressure

Since it is a iso-thermal process therefore q=w
Therefore q=39.64 J
(b)if the gas expands by the same amount again isotherm-ally and irreversibly
work done is





Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
<span>a=Δω/Δt
</span><span>a=2π*Δf/Δt
</span><span>a=2π*(f2-f1)/Δt
</span>
<span>f1=f2-a*Δt/2π
</span><span>f2=800/60 rev/sec
</span><span>a=-42 rad/sec^2
</span><span>Δt=1.75sec
</span><span>so
f1=25 rev/sec
f1=1500 rev/min</span>