The horizontal speed has no effect on the answer.
It doesn't matter whether you flick a marble horizontally from the roof,
fire a high-power rifle horizontally from the roof, drive a school bus straight
off the roof, or drop a bowling ball from the roof with zero horizontal speed.
Their vertical speed is completely determined by gravity, (and it happens to
be the same for all of them).
Handy dandy formula for the distance covered by anything that starts out
with zero speed and accelerates to the end:
Distance = (1/2) (acceleration) x (time)²
If the beginning of the journey is on Earth, then the acceleration is
9.8 m/s² ... the acceleration of gravity on Earth. We'll assume that
the 55-meter rooftop in the question is part of a building on Earth.
55 meters = (1/2) (9.8 m/s²) x (time)²
Divide each side
by 4.9 m/s² : 55 m / 4.9 m/s² = (time)²
(time)² = (55/4.9) sec²
Square-root
each side: time = √(55/4.9 sec²)
= 3.35 sec .
Answer: hello options related to your question is missing attached below is the missing part of your question
answer: No charge of the length of the bonds expected because the rod did not touch the charge source ( option A )
Explanation:
When the Charge is first, Furthest away and second and closest to the source charge. <em>The spring like bonds can be said to have No charge of the length of the bonds expected because the rod did not touch the charge source </em><em>when Furthest away the bond with charge will be less effective </em>
For a simple harmonic motion energy is given with:

Where k is a constant that depends on the type of the wave you are looking at and A is amplitude.
Let's calculate the energy of the wave using two different amplitudes given in the problem:

We can see that energy associated with the wave is 4 times smaller when we decrease its amplitude by half. So the answer should be C.
Answer:
3g/cm³
Explanation:
<em>Use the formula:</em>
density = mass ÷ volume
<em>Substitute (plug in) the values:</em>
density = 3 ÷ 1 = 3g/cm³
Explanation:
that the people closer too the head of the table will feel more vibrations than the people at the end of the table. since the vibrations will slow down as they travel farther down the table
Hope this helps!!