1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stiks02 [169]
3 years ago
9

A charge alters the space around it. What is this alteration of space called? Electric ether Electric Force Electric field Charg

ed space
Physics
1 answer:
ycow [4]3 years ago
6 0

Explanation:

A charge alters the space around it. This alteration of space is called the electric field. It is also defined as the electric force acting on a charged particle per unit test charge. It is given by :

E=\dfrac{F}{q}

Where

F is the electric force, F=\dfrac{kq_1q_2}{r^2}

The direction of electric field is in the direction of electric force. For a positive charge, the direction of electric field lines are outwards and for a negative charge, the direction of field lines are inwards.

Hence, the correct option is (c) "electric field".

You might be interested in
Planet Nine is speculated to be on average 20 times farther away from the Sun than Neptune (on average distance from the Sun). H
saveliy_v [14]

Answer:

The distance is 55.636 billion miles, or 528.2 AU.

Explanation:

Since the distance from the Sun to Neptune is 2.7818 billion miles, the distance from the Sun to Planet Nine would be 20 times that, which is:

d=(20)(2781800000\ miles)=55636000000\ miles

or 55.636 billion miles.

Since 1 astronomical unit (AU) is 93 million miles, that distance is also:

d=(55636000000\ miles)(\frac{1AU}{93000000\ miles})=598.2\ AU

6 0
3 years ago
What mass of ice (in g) can be melted if 27.2 kJ of thermal energy are added at the freezing point? Use molar mass = 18.02 g/mol
san4es73 [151]

Answer : The mass of ice melted can be, 3.98 grams.

Explanation :

First we have to calculate the moles of ice.

Q=\frac{\Delta H}{n}

where,

Q = energy absorbed = 27.2 kJ

\Delta H = enthalpy of fusion of ice = 6.01 kJ/mol

n = moles = ?

Now put all the given values in the above expression, we get:

27.2kJ=\frac{6.01kJ/mol}{n}

n=0.221mol

Now we have to calculate the mass of ice.

\text{Mass of ice}=\text{Moles of ice}\times \text{Molar mass of ice}

Molar mass of ice = 18.02 g/mol

\text{Mass of ice}=0.221mol\times 18.02g/mol=3.98g

Thus, the mass of ice melted can be, 3.98 grams.

3 0
3 years ago
1. Which of the following is not included
Harrizon [31]

Answer:

cartilage

Explanation:

8 0
3 years ago
Which statement accurately describes a sample of water during parts a and c of the heating curve
vivado [14]

Answer:

A and C is about 12 cm away from each other.

Explanation:

5 0
3 years ago
Read 2 more answers
Can anyone solve these for my by using unit vectors? Can you also please show your work
Oxana [17]

4. The Coyote has an initial position vector of \vec r_0=(15.5\,\mathrm m)\,\vec\jmath.

4a. The Coyote has an initial velocity vector of \vec v_0=\left(3.5\,\frac{\mathrm m}{\mathrm s}\right)\,\vec\imath. His position at time t is given by the vector

\vec r=\vec r_0+\vec v_0t+\dfrac12\vec at^2

where \vec a is the Coyote's acceleration vector at time t. He experiences acceleration only in the downward direction because of gravity, and in particular \vec a=-g\,\vec\jmath where g=9.80\,\frac{\mathrm m}{\mathrm s^2}. Splitting up the position vector into components, we have \vec r=r_x\,\vec\imath+r_y\,\vec\jmath with

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)t

r_y=15.5\,\mathrm m-\dfrac g2t^2

The Coyote hits the ground when r_y=0:

15.5\,\mathrm m-\dfrac g2t^2=0\implies t=1.8\,\mathrm s

4b. Here we evaluate r_x at the time found in (4a).

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)(1.8\,\mathrm s)=6.3\,\mathrm m

5. The shell has initial position vector \vec r_0=(1.52\,\mathrm m)\,\vec\jmath, and we're told that after some time the bullet (now separated from the shell) has a position of \vec r=(3500\,\mathrm m)\,\vec\imath.

5a. The vertical component of the shell's position vector is

r_y=1.52\,\mathrm m-\dfrac g2t^2

We find the shell hits the ground at

1.52\,\mathrm m-\dfrac g2t^2=0\implies t=0.56\,\mathrm s

5b. The horizontal component of the bullet's position vector is

r_x=v_0t

where v_0 is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for v_0:

3500\,\mathrm m=v_0(0.56\,\mathrm s)\implies v_0=6300\,\dfrac{\mathrm m}{\mathrm s}

5 0
3 years ago
Other questions:
  • Write about a possible scenario where you may be tempted to not use lab safety explain what the correct and most safe choice wou
    5·1 answer
  • Can some please help me with this?
    15·1 answer
  • A ball is thrown in the air with a vertical velocity of 12 m/s.
    8·2 answers
  • Raindrops are falling straight down at 11 m/s when suddenly the wind starts blowing horizontally at a brisk 5.0 m/s. From your p
    6·1 answer
  • Compute the dot product of the vectors u and v​, and find the angle between the vectors. Bold v equals 7 Bold i minus Bold j and
    6·1 answer
  • Compare and contrast an earthquake and a tsunami.
    15·1 answer
  • Does a Magnesium atom gains 2 electrons in an ionic compound?
    10·1 answer
  • I'm confused! Please help me if you can!
    15·2 answers
  • Please help on answer
    15·1 answer
  • How did planck find the correct curve for the specturm of light emitted by a hot obkect?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!