Optical Telescopes....................................
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
Answer:
<em><u>172,000 second </u></em>
<em><u>I'M</u></em><em><u> </u></em><em><u>NOT</u></em><em><u> </u></em><em><u>SURE</u></em><em><u> </u></em><em><u>THAT</u></em><em><u> </u></em><em><u>THIS</u></em><em><u> </u></em><em><u>IS</u></em><em><u> </u></em><em><u>RIGHT</u></em><em><u> </u></em><em><u>OR</u></em><em><u> </u></em><em><u>WRONG</u></em><em><u> </u></em><em><u> </u></em><em><u>IF</u></em><em><u> </u></em><em><u>IT'S</u></em><em><u> </u></em><em><u>WRONG</u></em><em><u> </u></em><em><u>THEN</u></em><em><u> </u></em><em><u>SORRY</u></em><em><u> </u></em>
Answer:
105.8 m
46 m/s
Explanation:
From the time the rocket is launched to the time it reaches its maximum height:
v = 0 m/s
a = -10 m/s²
t = 9.2 s / 2 = 4.6 s
Find: Δy and v₀
Δy = vt − ½ at²
Δy = (0 m/s) (4.6 s) − ½ (-10 m/s²) (4.6 s)²
Δy = 105.8 m
v = at + v₀
0 m/s = (-10 m/s²) (4.6 s) + v₀
v₀ = 46 m/s