The half-life of the reaction is 50 minutes
Data;
- Time = 43 minutes
- Type of reaction = first order
- Amount of Completion = 45%
<h3>Reaction Constant</h3>
Let the initial concentration of the reaction be X
The reactant left = (1 - 0.45) X
= 0.55 X
= X
For a first order reaction

<h3>Half Life </h3>
The half-life of a reaction is said to be the time required for the initial amount of the reactant to reach half it's original size.

Substitute the values

The half-life of the reaction is 50 minutes
Learn more on half-life of a first order reaction here;
brainly.com/question/14936355
Answer:
302.40
Explanation:
i had the same question on a test
Answer:If we dissolve NaF in water, we get the following equilibrium:
text{F}^-(aq)+text{H}_2text{O}(l) rightleftarrows text{HF}(aq)+text{OH}^-(aq)
The pH of the resulting solution can be determined if the K_b of the fluoride ion is known.
20.0 g of sodium fluoride is dissolve in enough water to make 500.0 mL of solution. Calculate the pH of the solution. The K_b of the fluoride ion is 1.4 × 10 −11 .
Step 1: List the known values and plan the problem.
Known
mass NaF = 20.0 g
molar mass NaF = 41.99 g/mol
volume solution = 0.500 L
K_b of F – = 1.4 × 10 −11
Unknown
pH of solution = ?
The molarity of the F − solution can be calculated from the mass, molar mass, and solution volume. Since NaF completely dissociates, the molarity of the NaF is equal to the molarity of the F − ion. An ICE Table (below) can be used to calculate the concentration of OH − produced and then the pH of the solution.
Explanation:
The units are nm (nano-meter), km (kilo-meter), pm (pico-meter), dm (decimeter), mm (millimeter), m (meter), cm (centimeter), hm (hectometer) and gm (gigameter). Now we can express each of these units in terms of m.
1 nm =
, 1 Km =
1 pm =
, 1 dm = 0.1 m, 1 mm = 0.001 m, 1 cm = 0.01 m, 1 hm = 100 m, 1 gm =
. Thus the decreasing unit will be
gm>km>hm>m>dm>cm>mm>nm>pm