<h3>
Answer:</h3>
48 g SO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
0.75 mol SO₂
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of S - 32.07 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of SO₂ - 32.07 + 2(16.00) = 64.07 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
48.0525 g SO₂ ≈ 48 g SO₂
Answer:
sp2 hybridization
Explanation:
The central carbon in the carbonate ion, CO32-, has sp2 hybridization. Carbonate has a central carbon atom bonded to three oxygen atoms.
First we need to find the number of moles that 43.9g of gallium metal is. We can do this by finding the molar weight of gallium and cross-multiplying to cancel out units:

So we are dealing with 0.63 moles of gallium metal.
We can take from the balanced equation that 4 moles of gallium metal will react completely with 3 moles of oxygen gas. We can take this ratio and make a proportion to find the amount of oxygen gas, in moles, that will react completely with 0.63 moles of gallium metal:

Cross multiply and solve for x:
4x=1.89
x=47 molesO₂
So now we know that 0.47 moles of oxygen gas will react with 43.9g of gallium metal.
2NH3(g) = N2(g) + 3H2(g)
Before decomposed :
P NH3 = 2.7 atm
After decomposed :
P N2 = 0.54 atm
P H2 = P N2 / 3 = 0.54 / 3 = 0.18 atm
P NH3 = 2.7 - 2(0.18) = 2.34 atm
Pressure equilibrium constant :
Kp = (P N2)(P H2)³ / (P NH3)²
Kp = (0.54)(0.18)³ / (2.34)²
Kp = 5.75 × 10^(-4)