.513mol x (102g/1mol)
Essentially, this is .513 x 102
Which equals: 52.326
But because you can only have 3 significant figures, your answer is:
52.3 grams
I hope this Helps!
Answer:

Explanation:
Hello there!
In this case, according to the given combustion reaction of octane, it is possible for us to perform the stoichiometric method in order to calculate the mass of octane that is required to consume 300.0 g of oxygen by considering the 2:25 mole ratio, and the molar masses of 114.22 g/mol and 32.00 g/mol respectively:

Regards!
One way of knowing that oxygen was the gas removed from the volume of air and not another is to know what the volume of air is made of first. When the composition of the volume of air is already identified, then next would be the process of separating these elements from each other and as to which is to be separated first. This would usually lead to knowing their masses, their boiling and freezing points, the temperatures at which they condense, and so on. This is to identify their differences to each other and use those differences to successfully separate those elements to each other.
AnswerIm telling your teacher "Ms.Byrd" your in 8th grade and go to berry middle?
Explanation:
Answer:
C is the answer to your question