Answer:
The correct answer is thermophiles.
Explanation:
Thermus aquaticus are heat resistant bacteria because these bacteria can survive under adverse environmental conditions like high temperature.
These bacteria belong to one of the most heat-loving groups of extremophiles that are thermophiles. Thermophiles are present in volcanic soil, geysers and around deep-sea vents where the temperature is extremely high.
Thermus aquaticus bacteria is used to manufacture an enzyme called Taq DNA polymerase, which is heat resistant and also an important factor in molecular biology.
Answer:
C) LiOH + HCl → LiCl + H₂O
General Formulas and Concepts:
<u>Chemistry - Reactions</u>
- Synthesis Reactions: A + B → AB
- Decomposition Reactions: AB → A + B
- Single-Replacement Reactions: A + BC → AB + C
- Double-Replacement Reactions: AB + CD → AD + BC
Explanation:
<u>Step 1: Define</u>
RxN A: 2Na + 2H₂O → 2NaOH + H₂
RxN B: CaCO₃ → CaO + CO₂
RxN C: LiOH + HCl → LiCl + H₂O
RxN D: CH₄ + 2O₂ → CO₂ + 2H₂O
<u>Step 2: Identify</u>
RxN A: Single Replacement Reaction
RxN B: Decomposition Reaction
RxN C: Double Replacement Reaction
RxN D: Combustion Reaction
Answer:
True.
Explanation:
This process is known as chemiosmosis in which there is a movement of ions across semipermeable membrane. Hydrogen ions moves from region of its higher concentration to the region of lower concentration. As this process belongs to the diffusion or osmosis of water molecules across cell membrane that is why known as chemiosmosis.
ATP synthase is an enzyme which function is to form ATP by using free energy generated in result of movement of hydrogen ions.
Answer:
The correct option is: d. trigonal planar
Explanation:
Sulfur trioxide is a chemical compound and the chemical formula of the compound is SO₃. In this molecule, the sulfur atom is in its +6 oxidation state and is covalently bound to three oxygen atoms. Sulfur trioxide is a neutral molecule. According to the VSEPR theory, Sulfur trioxide has a<u> trigonal planar molecular geometry.</u>
The heat released by reaction : C) -8870 J
<h3>Further explanation</h3>
Given
1.008 g of hydrogen
500.00 g water
The temperature rises 25.00 °C to 29.24 °C
Required
energy required
Solution
Q absorbed by water :
Q = m.c.Δt
Q = 500 g x 4.18 J/g C x (29.24-25)
Q = 8870.08 J
The reaction to produce HCl is an exothermic reaction (releasing heat), so that Q is negative
Q water = -Q HCl = -8870.08 J