<u>Chemical</u>. The copper atoms form new chemical bonds with atoms in the air.
Answer:
Explanation:
percentage abundance of third isotope = 100 - ( 78.900 + 10.009)
= 11.091 %
Atomic mass
24.1687 x .789 + 25.4830 x .10009 + 24.305 x .11091
19.069 + 2.5506 + 2.69566
= 24.3153 amu
The final temperature : 345 K
<h3>
Further explanation
</h3>
Given
475 cm³ initial volume
600 cm³ final volume
Required
The final temperature
Solution
At standard temperature and pressure , T = 273 K and 1 atm
Charles's Law :
When the gas pressure is kept constant, the gas volume is proportional to the temperature
V₁/T₁=V₂/T₂
Input the value :
T₂=(V₂T₁)/V₁
T₂=(600 x 273)/475
T₂=345 K
Answer:
b) It produces electrical current spontaneously.
Explanation:
Cells capable of converting chemical energy to electrical energy and vice versa are termed Electrochemical cells. There are two types of electrochemical cells viz: Galvanic or Voltaic cells and Electrolytic cells. Voltaic cell is an elctrochemical cell capable of generating electrical energy from the chemical reaction occuring in it.
The voltaic cell uses spontaneous reduction-oxidation (redox) reactions to generate ions in a half cell that causes electric currents to flow. An half cell is a part of the galvanic cell where either oxidation or reduction reaction is taking place. Hence, the spontaneous production of electric currents is true about Voltaic/Galvanic cells.
Answer:
- <u>Alkaline or basic solution </u>(alkaline and basic means the same)
Explanation:
According to the <em>pH</em>, solutions may be classified as neutral, acidic, or alkaline (basic).
This table shows such classification:
pH classification
7 neutral
> 7 alkaline or basic
< 7 acidic
Thus, since the pH of the solution is 8.3, which is greater than 7, the solution is classified as basic (alkaline).
Additionally, you must learn that pH is a logarithmic scale for the concentration of hydronium ions in the solution.
You can calculate the concentration of hydronium ions using antilogarithm properties:
![pH=-log[H_3O^+]\\ \\ {[H_3O^+]}=10^{-pH}\\ \\ {[H_3O^+]}=10^{-8.3}=0.00000000501](https://tex.z-dn.net/?f=pH%3D-log%5BH_3O%5E%2B%5D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D10%5E%7B-pH%7D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D10%5E%7B-8.3%7D%3D0.00000000501)
NaOH solutions are alkaline solutions, bases, according to Arrhenius model, because they contain OH⁻ ions and release them when ionize in water.