(a)
Substitute <em>x</em> = 3 tan(<em>t</em> ) and d<em>x</em> = 3 sec²(<em>t </em>) d<em>t</em> :
(b) The series
converges by comparison to the convergent <em>p</em>-series,
(c) The series
converges absolutely, since
That is, ∑ (-1)ⁿ (<em>n</em> ² + 9)/<em>e</em>ⁿ converges absolutely because ∑ |(-1)ⁿ (<em>n</em> ² + 9)/<em>e</em>ⁿ| = ∑ (<em>n</em> ² + 9)/<em>e</em>ⁿ in turn converges by comparison to a geometric series.
Correct answer:
First reflect across the y-axis, then rotate 90 degrees clockwise about point K, then shift 3 units down.
Answer:
LN = 64 units
Step-by-step explanation:
Given M lies on LN, so LN = LM + MN --------------(1)
LN = 12x + 16
LM = 10x + 8
MN = 5x - 4
Substituting the values in equation 1, we get:
12x + 16 = (10x + 8) + (5x - 4)
12x + 16 = 15x + 4
15x - 12x = 16 -4
3x=12
Therefore x=4
LN= 12(4) + 16 = 64 units
Answer:
(2,3)
Step-by-step explanation:
The only two numbers all three share