The given formula for heat, Q=mc(Tf-Ti), is the best way to solve such problems with changes in temperature. It can be said that m is the mass of the substance. C is the specific heat of the substance. The term (Tf-Ti) is the change in temperature.
Q = mc(Tf-Ti) = 480g(0.96 J/g-C)(234-22) = 97689.6 Joules of heat
Answer:
Decreased because the method can not distinguish oxygen from the gas added
Explanation:
The answer is 2.7gm/cm^3 . Density is mass divided by volume .
Answer:
1.006 * 103
Explanation:
Add the number between 1 and 9 and add a decimal accordingly . so the answer is 1.006 multiplied by 10 raised to power 3
Answer:

Explanation:
Hello,
In this case, since the chemical reaction is:

We can see that hydrochloric acid and magnesium hydroxide are in a 2:1 mole ratio, which means that the neutralization point, we can write:

In such a way, the moles of magnesium hydroxide (molar mass 58.3 g/mol) in 500 mg are:

Next, since the pH of hydrochloric acid is 1.25, the concentration of H⁺ as well as the acid (strong acid) is:
![[H^+]=[HCl]=10^{-pH}=10^{-1.25}=0.0562M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BHCl%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-1.25%7D%3D0.0562M)
Then, since the concentration and the volume define the moles, we can write:
![[HCl]*V_{HCl}=2*n_{Mg(OH)_2}](https://tex.z-dn.net/?f=%5BHCl%5D%2AV_%7BHCl%7D%3D2%2An_%7BMg%28OH%29_2%7D)
Therefore, the neutralized volume turns out:

Best regards.