The answer is D :) have a nice day!
Answer:
35g/l
Explanation:
Salinity is practically the saltiness of the water, in basic terms. It's basically the amount of salt dissolved in water. Ocean water has a salinity of around 35g/l (that's about 3.5% of which is dissolved salt in water!). However, Atlantic Ocean (the ocean with the saltiest water), can range up to 37g/l.
<em>Feel free to mark this as brainliest :D</em>
Answer:
235 g
Explanation:
From the question;
- Volume is 400.0 mL
- Molarity of a solution is 4.25 M
We need to determine the mass of the solute K₂CO₃,
we know that;
Molarity = Number of moles ÷ Volume
Therefore;
First we determine the number of moles of the solute;
Moles = Molarity × volume
Moles of K₂CO₃ = 4.25 M × 0.4 L
= 1.7 moles
Secondly, we determine the mass of K₂CO₃,
We know that;
Mass = Moles × Molar mass
Molar mass of K₂CO₃, is 138.205 g/mol
Therefore;
Mass = 1.7 moles × 138.205 g/mol
= 234.9485 g
= 235 g
Thus, the mass of K₂CO₃ needed is 235 g
Answer:
5.00 g of solute will remain undissolved at the bottom of the container
Explanation:
From the question, the solubility of the solute in the given solvent is 45.0 grams of solute per 500 grams of solvent.
Now if i pour 50.0 grams of solute into 800 grams of solvent, it means that only 45 g will dissolve in 500 g of solvent leaving the additional 5 g undissolved.
Hence, 5 g of solute will remain undissolved at the bottom of the container.