Answer:
Q = 12540 J
Explanation:
It is given that,
Mass of water, m = 50 mL = 50 g
It is heated from 0 degrees Celsius to 60 degrees Celsius.
We need to find the energy required to heat the water. The formula use to find it as follows :

Where c is the specific heat of water, c = 4.18 J/g°C
Put all the values,

So, 12540 J of energy is used to heat the water.
Answer:
Kinetic energy is energy possessed by a body by virtue of its movement. Potential energy is the energy possessed by a body by virtue of its position or state. While kinetic energy of an object is relative to the state of other objects in its environment, potential energy is completely independent of its environment.
Both energies are related to motion.
Explanation:
Answer:
KE₂ = 6000 J
Explanation:
Given that
Potential energy at top U₁= 7000 J
Potential energy at bottom U₂= 1000 J
The kinetic energy at top ,KE₁= 0 J
Lets take kinetic energy at bottom level = KE₂
Now from energy conservation
U₁+ KE₁= U₂+ KE₂
Now by putting the values
U₁+ KE₁= U₂+ KE₂
7000+ 0 = 1000+ KE₂
KE₂ = 7000 - 1000 J
KE₂ = 6000 J
Therefore the kinetic energy at bottom is 6000 J.
Answer:
139.514 metres
Explanation:
Initial velocity of the truck = 6.6 m/s
Acceleration of the truck = 2.8 m/s^2
Time interval = 7.9 s
Therefore we use the formula,
s = ut + 1/2 at^2
*where s(the distance travelled)...u(the initial velocity)...t(the time period)
; s = 6.6(7.9) + 1/2 (2.8)(7.9)^2
; s = 52.14 + 87.374
The distance moved by the truck = 139.514m
The frequency of the oscillation in hertz is calculated to be 0.00031 Hz.
The frequency of a wave is defined as the number of cycles completed per second while the period refers to the time taken to complete a cycle. The frequency is the inverse of period.
So;
Period(T) = 54 minutes or 3240 seconds
Frequency (f) = T-1 = 1/T = 1/3240 seconds = 0.00031 Hz
Learn more: brainly.com/question/14588679