Answer: 44.57°C
Explanation:
The following can be deduced from the question:
Specific heat of water = 4.186 J/kg
From the question, we can infer that 625 × 4.186 joules of heat will be lost when there's a 1°C drop of water.
We then calculate the amount if degrees that it'll take to cool for 7.96 x 10⁴J. This will be:
= 7.96 × 10⁴ /(625 × 4.186)
= 79600/(625 x 4.186)
= 79600/2616.25
= 30.43°C
The final temperature will then be:
= 75.0°C - 30.43°C
= 44.57°C
Rate of speed (3 m/s north is three miles per second north, so it's a rate of speed)
Answer:
Explanation:
The process is isothermic, as P V = constant .
work done = 2.303 n RT log P₁ / P₂
= 2.303 x 5 / 29 x 8.3 x 303 log 2 / 1 kJ
= 300.5k J
This energy in work done by the gas will come fro heat supplied as internal energy is constant due to constant temperature.
heat supplied = 300.5k J
specific volume is volume per unit mass
v / m
pv = n RT
pv = m / M RT
v / m = RT / p M
specific volume = RT / p M
option B is correct.
Answer:
(1) V = 0.2 J (2) 0.05J
Explanation:
Solution
Given that:
K = 160 N/m
x = 0.05 m
Now,
(1) we solve for the initial potential energy stored
Thus,
V = 1/2 kx² = 0.5 * 160 * (0.05)²
Therefore V = 0.2 J
(2)Now, we solve for how much of the internal energy is produced as the toy springs up to its maximum height.
By using the energy conversion, we have the following
ΔV = mgh
=(0.1/9.8) * 9.8 * 1.5 = 0.15J
The internal energy = 0.2 -0.15
=0.05J