Answer: C ) 75 kilometers
Explanation: 30 + 45 = 75
Explanation:
Let us assume that the separation of plate be equal to d and the area of plates is
. As the capacitance of capacitor is given as follows.
C = 
It is known that the dielectric strength of air is as follows.
E = 
Expression for maximum potential difference is that the capacitor can with stand is as follows.
dV = E × d
And, maximum charge that can be placed on the capacitor is as follows.
Q = CV
= 
= 
= 
= 
or, = 10.62 nC
Thus, we can conclude that charge on capacitor is 10.62 nC.
Answer:
Spring cannot return to its original, since a part of its deformation is <u>plastic</u>, not <u>elastic</u>.
Explanation:
Physically speaking, stress is equal to the axial force divided by effective transversal area of spring. In addition, springs have usually a linear relationship between stress and strain in <u>elastic region</u>, since they are made of ductile materials. Axial force is directly proportional to axial stress, which is also directly proportional to axial strain.
Then, if force is greater than force associated with elastic limit of the spring, then spring cannot return to its original, since a part of its deformation is <u>plastic</u>, not <u>elastic</u>.
Answer:
You dont need BRAINLY there is an app called slader where you scan the textbook barcode and it shows you the answers for the question in the textbook.
Explanation:
Answer:
<em>Thermal energy</em>
Explanation:
<u>Electrical Energy
</u>
The electrical energy has been found to be an excellent resource to power our modern lifestyle. It can be produced in several ways including hydroelectrical plants, thermal plants, nuclear plants, solar panels, among many others. Each one of them converts different types of energy into electrical energy.
When converting to electrical energy, some equipment is needed, like generators, transformers, cables, circuit breakers, and every kind of devices with specific functions to have a good and safe electrical service. Each device has an internal resistance that opposes the flow of current. The resistances produce thermal energy as a result of current flowing through them. It's not possible to avoid this waste of energy, electrical engineers do their best to use better materials and configurations to reduce the thermal waste to a minimum.