Answer:
88 m/s
Explanation:
To solve the problem, we can use the following SUVAT equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
d is the distance covered
For the car in this problem, we have
d = 484 m is the stopping distance
v = 0 is the final velocity
is the acceleration
Solving for u, we find the initial velocity:

Answer:
um how about no.. this is not the site for what you're looking for...
Explanation:
Answer:
Explanation:
Given a particle of mass
M = 1.7 × 10^-3 kg
Given a potential as a function of x
U(x) = -17 J Cos[x/0.35 m]
U(x) = -17 Cos(x/0.35)
Angular frequency at x = 0
Let find the force at x = 0
F = dU/dx
F = -17 × -Sin(x/0.35) / 0.35
F = 48.57 Sin(x/0.35)
At x = 0
Sin(0) =0
Then,
F = 0 N
So, from hooke's law
F = -kx
Then,
0 = -kx
This shows that k = 0
Then, angular frequency can be calculated using
ω = √(k/m)
So, since k = 0 at x = 0
Then,
ω = √0/m
ω = √0
ω = 0 rad/s
So, the angular frequency is 0 rad/s
Amplitude is a measurement of the magnitude of displacement (or maximum disturbance) of a medium from its resting state, as diagramed in the peak deviation example below (it can also be a measurement of an electrical signal's increased or decreased strength above or below a nominal state).
Answer:
you can simply answer by derivative = 3.5x^2+25x+250-y=0 you can derivate this eqn 7x +25-1=0 7x=24 yo u can divide you get it