Answer:
its electrons
Explanation:
only electrons stays outside the nucleus unlike protons and neutrons and it has little to no mass
Answer:
The voltage across the capacitor is 1.57 V.
Explanation:
Given that,
Number of turns = 10
Diameter = 1.0 cm
Resistance = 0.50 Ω
Capacitor = 1.0μ F
Magnetic field = 1.0 mT
We need to calculate the flux
Using formula of flux

Put the value into the formula


We need to calculate the induced emf
Using formula of induced emf

Put the value into the formula

Put the value of emf from ohm's law





We know that,


We need to calculate the voltage across the capacitor
Using formula of charge


Put the value into the formula


Hence, The voltage across the capacitor is 1.57 V.
A good heat insulator absorbs all, or almost all, of the heat energy
from any heat that flows through it.
A good electrical insulator absorbs all, or almost all, of the energy
from any electric current that flows through it.
Answer:
m = 95000 kg
Explanation:
Given that,
Net force acting on the house, F = 2850 N
Initial speed, u = 0
Final speed, v = 15 cm/s = 0.15 m/s
We need to find the mass of the house. Let the mass be m. We know that the net force is given by :
F = ma
Where
a is the acceleration of the house.
So,

So, the mass of the house is equal to 95000 kg.