No, work is not done whenever you hold a heavy object for a long time
<h3>What is work done ?</h3>
The result of a force's displacement and its component of force exerted by the object in the direction of displacement is what is known as the force's work. When we push a block with some force, the body moves quickly and work is completed.
- No work, as that term is used here, is done until the object is moved in some way and a component of the force travels along the path that the object is moved. Because there is no displacement when holding a heavy object still, energy is not transferred to it.
Learn more about Work done here:
brainly.com/question/25573309
#SPJ4
Now ,
C + O2 → CO2
According to above equation, 1 mole of carbon reacts with one mole of oxygen to produce one mole of carbon dioxide.Thus this implies that 12 g of carbon reacts with 32 g of O2 to produce 44 g of CO2.
No of moles = mass of the substance/molecular mass of the substance.
In this case 1.2 g of carbon reacts with "x "g of O2 to produce 4.4 g of CO2.
No of moles of carbon in this case = 1.2÷ 12 = 0.1 moles.
No of moles of carbon dioxide formed = 4.4÷44 =0.1 moles
Thus already discussed above, 1 mole of carbon reacts with 1 mole of oxygen to produce 1 mole of carbon dioxide. Hence to produce 0.1 mole of CO2 ,0.1 mole of carbon needs to react with 0.1 mole of oxygen.
Also number of moles of O2 = mass of O2÷ molar mass of O2
Substituting number of moles of O2 as 0.1 we get
mass of O2(x) = Number of moles of O2 × Molar mass of O2
Mass of O2 (x) = 0.1 × 32= 3.2 g
Thus mass of 3.2 g O2 reacts with 1.2 g of CO2 to produce 4.4 g of CO2.
Sediments move one place to another in the process called “ erosion”
Solution :
From Fick's law:

Mass balance: Exits = Accumulation





From the last step, area cancels out and thus leaves :

So now we can substitute the
by the Fick's law

Substituting the values we get





Answer:
A water molecule displays polarity by having negative and positive ends. Due to this charge difference, a water molecule is called a dipole.
Explanation: