Answer:
5 × 10^-4 L
Explanation:
The equation of the reaction is;
2KClO3 = 2KCl + 3O2
Number of moles of KClO3 = 13.5g/122.5 g / mol = 0.11 moles
From the stoichiometry of the reaction;
2 moles of KClO3 yields 3 moles of O2
0.11 moles of KClO3 yields 0.11 × 3/2 = 0.165 moles of oxygen gas
From the ideal gas equation;
PV= nRT
P= 85.4 × 10^4 KPa
V=?
n= 0.165
R= 8.314 J K-1 mol-1
T= 40+273 = 313K
V= 0.165 ×8.134 × 313/85.4 × 10^4
V=429.4/85.4 × 10^4
V= 5 × 10^-4 L
the balanced equation for the formation of ammonia is
N₂ + 3H₂ ---> 2NH₃
molar ratio of N₂ to NH₃ is 1:2
mass of N₂ reacted is 8.0 g
therefore number of N₂ moles reacted is - 8.0 g / 28 g/mol = 0.286 mol
according to the molar ratio,
1 mol of N₂ will react to give 2 mol of NH₃, assuming nitrogen is the limiting reactant
therefore 0.286 mol of N₂ should give - 2 x 0.286 mol = 0.572 mol of NH₃
therefore mass of NH₃ formed is - 0.572 mol x 17 g/mol = 9.72 g
a mass of 9.72 mol of NH₃ is formed
I would say the first three. But I'm not 100% sure. I'm truly sorry if it's wrong
Answer:
When Epsom salt (magnesium sulfate) dissolves, it separates into its ions: a magnesium ion (Mg2+) and a sulfate ion (SO4 2-), which results in hard water. When hard water and soap are mixed, the magnesium ion reacts with soap molecules and forms a solid material called a precipitate, which does not dissolve.
Explanation:
can i have brainlest