Answer:
The resulting solution is basic.
Explanation:
The reaction that takes place is:
First we <u>calculate the added moles of HNO₃ and KOH</u>:
- HNO₃ ⇒ 12.5 mL * 0.280 M = 3.5 mmol HNO₃
- KOH ⇒ 5.0 mL * 0.920 M = 4.6 mmol KOH
As <em>there are more KOH moles than HNO₃,</em> the resulting solution is basic.
Answer:
Mass = 9.58 g
Explanation:
Given data:
Mass of Zn = 2g
Theoretical yield of ZnI₂ = ?
Solution:
Chemical equation:
Zn + I₂ → ZnI₂
Number of moles of Zn:
Number of moles = mass/molar mass
Number of moles = 2g / 65.38 g/mol
Number of moles = 0.03 mol
Now we will compare the moles of Zn and ZnI₂.
Zn : ZnI₂
1 : 1
0.03 : 0.03
Mass of ZnI₂:
Mass = number of moles × molar mass
Mass = 0.03 mol × 319.22 g/mol
Mass = 9.58 g
Answer:
in a chemical reaction of NaOH with H2O, after NaOH is completely disassociated, we will find Na+ and OH- ions in the solution. (option C).
Explanation:
In a reaction where NaOH is added to H2O.
NaOH is considered a strong base, this means that in an aqueous solution ( in water) it's able to completely disassociate in ions.
There will not remain any NaOH in the solution. This means option D is not correct.
The ions in which NaOH will disassociate are : NaOH → Na+ + OH-
These ions we will find in the solution.
Not only Na+ because NaOH is a strong base, so there will be a lot of OH- ions as well in solution.
This means in a chemical reaction of NaOH with H2O, after NaOH is completely disassociated, we will find Na+ and OH- ions in the solution.
B) Morrison and Franscioni's research done to create the Frisbee.