Answer:
Vab = 80V
Explanation:
The only current flowing in the circuit is supplied by the 100 V source. Its only load is the 40+60 ohm series circuit attached, so the current in that loop is (100V)/(40+60Ω) = 1A. That means V1 = (1A)(60Ω) = 60V.
Vab will be the sum of voltages around the right-side "loop" between terminals 'a' and 'b'. It is (working clockwise from terminal 'b') ...
Vab = -10V +60V +(0A×10Ω) +30V
Vab = 80V
Answer:
ΔT= 11.94 °C
Explanation:
Given that
mass of water = 10 kh
Time t= 15 min
Heat lot from water = 400 KJ
Heat input to the water = 1 KW
Heat input the water= 1 x 15 x 60
=900 KJ
By heat balancing
Heat supply - heat rejected = Heat gain by water
As we know that heat capacity of water


Now by putting the values
900 - 400 = 10 x 4.187 x ΔT
So rise in temperature of water ΔT= 11.94 °C
Answer:
the surface heat-transfer coefficient due to natural convection during the initial cooling period. = 4.93 w/m²k
Explanation:
check attachement for answer explanation
Answer:
Ususushehehehhuuiiïbbb
Explanation:
Yyshehshehshshsheyysysueueue
Answer:
Assumption:
1. The kinetic and potential energy changes are negligible
2. The cylinder is well insulated and thus heat transfer is negligible.
3. The thermal energy stored in the cylinder itself is negligible.
4. The process is stated to be reversible
Analysis:
a. This is reversible adiabatic(i.e isentropic) process and thus 
From the refrigerant table A11-A13

sat vapor
m=

b.) We take the content of the cylinder as the sysytem.
This is a closed system since no mass leaves or enters.
Hence, the energy balance for adiabatic closed system can be expressed as:
ΔE
ΔU
)
workdone during the isentropic process
=5.8491(246.82-219.9)
=5.8491(26.91)
=157.3993
=157.4kJ