Answer:
The time required is 10.078 hours or 605 min
Explanation:
The formula to apply here is ;
K=(d²-d²₀ )/t
where t is time in hours
d is grain diameter to be achieved after heating in mm
d₀ is the grain diameter before heating in mm
Given
d=5.5 × 10^-2 mm
d₀=2.4 × 10^-2 mm
t₁= 500 min = 500/60 =25/3 hrs
t₂=?
n=2.2
First find K
K=(d²-d²₀ )/t₁
K={ (5.1 × 10^-2 mm)²-(2.4 × 10−2 mm)² }/ 25/3
K=(0.051²-0.024²) ÷25/2
K=0.000243 mm²/h
Re-arrange equation for K ,to get the equation for d as;
d=√(d₀²+ Kt) where now t=t₂

Answer:
hshdhriwjajaldh skshdjdywuusg
Explanation:
null
Answer:
Multiplying impulse response by t ( option D )
Explanation:
We can obtain The impulse response of strength 1 considering a unit step response by Multiplying impulse response by t .
When we consider the Laplace Domain, and the relationship between unit step and impulse, we can deduce that the Impulse response will take the inverse Laplace transform of the function ( transfer ) . Hence Multiplying impulse response by t will be used .
Answer:
Yes, fracture will occur
Explanation:
Half length of internal crack will be 4mm/2=2mm=0.002m
To find the dimensionless parameter, we use critical stress crack propagation equation
and making Y the subject

Where Y is the dimensionless parameter, a is half length of crack, K is plane strain fracture toughness,
is critical stress required for initiating crack propagation. Substituting the figures given in question we obtain

When the maximum internal crack length is 6mm, half the length of internal crack is 6mm/2=3mm=0.003m
and making K the subject
and substituting 260 MPa for
while a is taken as 0.003m and Y is already known

Therefore, fracture toughness at critical stress when maximum internal crack is 6mm is 42.455 Mpa and since it’s greater than 40 Mpa, fracture occurs to the material
Answer:
The differences are listed below
Explanation:
The differences between consolidation and compaction are as follows:
In compaction the mechanical pressure is used to compress the soil. In consolidation, there is an application of stead pressure.
In compaction, there is a dynamic load by rapid mechanical methods like tamping, rolling, etc. In consolidation, there is static and sustained pressure applied for a long time.
In compaction, the soil volume is reduced by removing air from the void. In consolidation, the soil volume is reduced by squeezing out water from the pores.
Compaction is used for sandy soil, consolidation on the other hand, is used for clay soil.