1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igor_vitrenko [27]
3 years ago
11

A copper wire of original diameter .80 m exhibits a maximum tensile load/ strength at an engineering stress= 248.2 mpa. its duct

ility is measured as 75 reduction of area. Determine the true strain at failure.
Engineering
1 answer:
ddd [48]3 years ago
4 0

Answer:

True Strain at failure = 1.386

Explanation:

For the question, ductility is given in reduction In the area to be 0.75

Let the initial Cross sectional Area of wire be Ao

And the final cross sectional Area of wire of cross sectional Area of wire at fracture be A

(Ao - A)/Ao = ductility = 0.75

Ao - A = 0.75Ao

A = Ao - 0.75Ao

A = 0.25 Ao

True Strain = In (Lf/Lo)

To obtain the ratio of the lengths of wire,

The volume of the wire stays constant, that is, Vo = Vf; Vo = Ao × Lo and Vf = A × Lf

AoLo = ALf

Lf/Lo = Ao/A

In (Lf/Lo) = In (Ao/A) = In (Ao/0.25Ao) = In 4 = 1.386

True Strain = 1.386

You might be interested in
What is the first test you should do when checking the charging system?
yan [13]

Answer:

Connect the test light in series with the negative post, and start pulling feed wires. The first to check is the heavy charging wire from the alternator. A bad or leaky diode in an alternator is a very common source of overnight battery drain. Connect wires one at a time to see what lead is drawing current.

8 0
2 years ago
- Viscoelastic stress relaxation
My name is Ann [436]

Explanation:

The correct answers to the fill in the blanks would be;

1. Viscoelastic stress relaxation refers to scenarios for which the stress applied to a polymer must decay over time in order to maintain a constant strain. Otherwise, over time, the polymer chains will slip and slide past one another in response to a constant applied load and the strain will increase (in magnitude).

2. Viscoelastic creep refers to scenarios for which a polymer will permanently flow over time in response a constant applied stress.

The polymer whose properties have been mentioned above is commonly known as Kevlar.

It is mostly used in high-strength fabrics and its properties are because of several hydrogen bonds between polymer molecules.

5 0
3 years ago
An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500
Assoli18 [71]

Answer: The exit temperature of the gas in deg C is 32^{o}C.

Explanation:

The given data is as follows.

C_{p} = 1000 J/kg K,   R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)

P_{1} = 100 kPa,     V_{1} = 15 m^{3}/s

T_{1} = 27^{o}C = (27 + 273) K = 300 K

We know that for an ideal gas the mass flow rate will be calculated as follows.

     P_{1}V_{1} = mRT_{1}

or,         m = \frac{P_{1}V_{1}}{RT_{1}}

                = \frac{100 \times 15}{0.5 \times 300}  

                = 10 kg/s

Now, according to the steady flow energy equation:

mh_{1} + Q = mh_{2} + W

h_{1} + \frac{Q}{m} = h_{2} + \frac{W}{m}

C_{p}T_{1} - \frac{80}{10} = C_{p}T_{2} - \frac{130}{10}

(T_{2} - T_{1})C_{p} = \frac{130 - 80}{10}

(T_{2} - T_{1}) = 5 K

T_{2} = 5 K + 300 K

T_{2} = 305 K

           = (305 K - 273 K)

           = 32^{o}C

Therefore, we can conclude that the exit temperature of the gas in deg C is 32^{o}C.

8 0
4 years ago
A vertical pole consisting of a circular tube of outer diameter 127 mm and inner diameter 115 mm is loaded by a linearly varying
Anna [14]

Maximum shear stress in the pole is 0.

<u>Explanation:</u>

Given-

Outer diameter = 127 mm

Outer radius,r_{2} = 127/2 = 63.5 mm

Inner diameter = 115 mm

Inner radius, r_{1} = 115/2 = 57.5 mm

Force, q = 0

Maximum shear stress, τmax = ?

 τmax  = \frac{4q}{3\pi } (\frac{r2^2 + r2r1 + r1^2}{r2^4 - r1^4} )

If force, q is 0 then τmax is also equal to 0.

Therefore, maximum shear stress in the pole is 0.

3 0
4 years ago
Consider fully developed laminar flow in a circular pipe. If the viscosity of the fluid is reduced by half by heating while the
gladu [14]

Answer:

The pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its original value.

Explanation:

For a fully developed laminar flow in a circular pipe, the flowrate (volumetric) is given by the Hagen-Poiseulle's equation.

Q = π(ΔPR⁴/8μL)

where Q = volumetric flowrate

ΔP = Pressure drop across the pipe

μ = fluid viscosity

L = pipe length

If all the other parameters are kept constant, the pressure drop across the circular pipe is directly proportional to the viscosity of the fluid flowing in the pipe

ΔP = μ(8QL/πR⁴)

ΔP = Kμ

K = (8QL/πR⁴) = constant (for this question)

ΔP = Kμ

K = (ΔP/μ)

So, if the viscosity is halved, the new viscosity (μ₁) will be half of the original viscosity (μ).

μ₁ = (μ/2)

The new pressure drop (ΔP₁) is then

ΔP₁ = Kμ₁ = K(μ/2)

Recall,

K = (ΔP/μ)

ΔP₁ = K(μ/2) = (ΔP/μ) × (μ/2) = (ΔP/2)

Hence, the pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its value.

Hope this Helps!!!

4 0
3 years ago
Other questions:
  • Can you reduce energy use without compromising people's basic needs (such as opening a car, cooking food, home lighting, electri
    13·1 answer
  • A block is sliding on a level surface of varying materials, and so its effective coefficient of friction is variable, 0.1t, wher
    6·1 answer
  • What are factor of safety for brittle and ductile material
    5·1 answer
  • A water agency stated that waterlines cannot have water flowing faster than 8 ft/s. What is the minimum standard pipe diameter t
    12·1 answer
  • Homes may be heated by pumping hot water through radiators. What mass of water (in g) will provide the same amount of heat when
    8·1 answer
  • 25 points and brainliest is it A, B, C, D
    5·2 answers
  • Carbon dioxide at a temperature of 0oC and a pressure of 600 kPa (abs) flows through a horizontal 40-mm- diameter pipe with an a
    10·1 answer
  • How can you do this 5.2.4: Rating?
    5·1 answer
  • 5. A 15-nC point charge is at the origin in free space. Calculate V₁ if point P, is located at
    14·1 answer
  • Which pipe for water is best for construction?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!