1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irga5000 [103]
3 years ago
15

Who plays blox burg???

Engineering
2 answers:
xeze [42]3 years ago
7 0

Answer:

I don't have robux

Explanation:

but i love adopt me

Lady_Fox [76]3 years ago
3 0

Answer:

me it is fun

Explanation:

and adopt me too

You might be interested in
Find the value of P(-1.5≤Z≤2)
Vladimir [108]

Answer:

  0.9104

Explanation:

Suitable technology can tell you the probability.

P(-1.5≤Z≤2) ≈ 0.9104

__

A phone app gives the probability as 0.9104426667829628.

7 0
3 years ago
What are the mechanical properties of a geotextile that are of most importance when using it as a separator in an unpaved road s
Alekssandra [29.7K]

hey thanks for the point's i really needed them.. Cheers!

adhrtftgHDSRFDdhrgdrgfsdhrgfa

6 0
3 years ago
A silicon carbide plate fractured in bending when a blunt load was applied to the plate center. The distance between the fractur
Amanda [17]

Question in order:

A silicon carbide plate fractures in bending when a blunt load was applied to the plate center. The distance between the fracture origin and the mirror/mist boundary on the fracture surface was 0.796 mm. To determine the stress used to break the plate, three samples of the same material were tested and produced the following. What is the estimate of the stress present at the time of fracture for the original plate?

Mirror Radius (mm) Bending Failure Stress (MPa)

0.603                         225

0.203                         368

0.162                         442

Answer:

191 MPa

Explanation:

Failure stress of bending is Inversely proportional to the mirror radius

Bending Stress = \frac{1}{(Mirror Radius)^{n}}

At mirror radius 1 = 0.603 mm   Bending stress 1 = 225 Mpa..............(1)

At mirror radius 2 = 0.203 mm  Bending stress 2 = 368 Mpa...............(2)

At mirror radius 3 = 0.162 mm   Bending stress 3 = 442 Mpa...............(3)

comparing case 1 and 2 using the above equation

\frac{Stress 1}{Stress 2} = ({\frac{Radius 2}{Radius 1}})^{n_1}

\frac{225}{368} = ({\frac{0.203}{0.603}})^{n_1}

0.6114 = (0.3366)^{n_1}

Taking the natural logarithm of both side

ln(0.6114) = n ln(0.3366)

n₁ = ln(0.6114)/ln(0.3366)

n₁ = 0.452

comparing case 2 and 3 using the above equation

\frac{Stress 2}{Stress 3} = ({\frac{Radius 3}{Radius 2}})^{n_2}

\frac{368}{442} = ({\frac{0.162}{0.203}})^{n_2}

0.8326 = (0.7980)^{n_2}

Taking the natural logarithm of both side

ln(0.8326) = n ln(0.7980)

n₂ = ln(0.8326)/ln(0.7980)

n₂ = 0.821

comparing case 1 and 3 using the above equation

\frac{Stress 1}{Stress 3} = ({\frac{Radius 3}{Radius 1}})^{n_3}

\frac{225}{442} = ({\frac{0.162}{0.603}})^{n_3}

0.5090 = (0.2687)^{n_3}

Taking the natural logarithm of both side

ln(0.5090) = n ln(0.2687)

n₃ = ln(0.5090)/ln(0.2687)

n₃ = 0.514

average for n

n = \frac{n_1 + n_2 + n_3}{3}

n = \frac{0.452 +0.821 + 0.514}{3}

n = 0.596

Hence to get bending stress x at mirror radius 0.796

\frac{Stress x}{Stress 3} = ({\frac{Radius 3}{Radius x}})^{0.596}

\frac{Stress x}{225} = ({\frac{0.603}{0.796}})^{0.596}

\frac{Stress x}{225} = 0.8475

stress x = 191 MPa

3 0
3 years ago
An air conditioner removes heat steadily from a house at a rate of 750 kJ/min while drawing electric power at a rate of 6 kW. De
Paraphin [41]

Answer:

a. 2.08, b. 1110 kJ/min

Explanation:

The power consumption and the cooling rate of an air conditioner are given. The COP or Coefficient of Performance and the rate of heat rejection are to be determined. <u>Assume that the air conditioner operates steadily.</u>

a. The coefficient of performance of the air conditioner (refrigerator) is determined from its definition, which is

COP(r) = Q(L)/W(net in), where Q(L) is the rate of heat removed and W(net in) is the work done to remove said heat

COP(r) = (750 kJ/min/6 kW) x (1 kW/60kJ/min) = 2.08

The COP of this air conditioner is 2.08.

b. The rate of heat discharged to the outside air is determined from the energy balance.

Q(H) = Q(L) + W(net in)

Q(H) = 750 kJ/min + 6 x 60 kJ/min = 1110 kJ/min

The rate of heat transfer to the outside air is 1110 kJ for every minute.

5 0
3 years ago
Calculate the differential pressure in kPa across the hatch of a submarine 320m below the surface of the sea. Assume the atmosph
kicyunya [14]

Answer:

The pressure difference across hatch of the submarine is 3217.68 kpa.

Explanation:

Gauge pressure is the pressure above the atmospheric pressure. If we consider gauge pressure for finding pressure differential then no need to consider atmospheric pressure as they will cancel out. According to hydrostatic law, pressure varies in the z direction only.  

Given:

Height of the hatch is 320 m

Surface gravity of the sea water is 1.025.

Density of water 1000 kg/m³.

Calculation:

Step1

Density of sea water is calculated as follows:

S.G=\frac{\rho_{sw}}{\rho_{w}}

Here, density of sea water is\rho_{sw}, surface gravity is S.G and density of water is \rho_{w}.

Substitute all the values in the above equation as follows:

S.G=\frac{\rho_{sw}}{\rho_{w}}

1.025=\frac{\rho_{sw}}{1000}

\rho_{sw}=1025 kg/m³.

Step2

Difference in pressure is calculated as follows:

\bigtriangleup p=rho_{sw}gh

\bigtriangleup p=1025\times9.81\times320

\bigtriangleup p=3217680 pa.

Or

\bigtriangleup p=(3217680pa)(\frac{1kpa}{100pa})

\bigtriangleup p=3217.68 kpa.

Thus, the pressure difference across hatch of the submarine is 3217.68 kpa.

6 0
3 years ago
Other questions:
  • : The interior wall of a furnace is maintained at a temperature of 900 0C. The wall is 60 cm thick, 1 m wide, 1.5 m broad of mat
    12·1 answer
  • What is the damped natural frequency (in rad/s) of a second order system whose undamped natural frequency is 25 rad/s and has a
    15·1 answer
  • If 20 kg of iron, initially at 12 °C, is added to 30 kg of water, initially at 90 °C, what would be the final temperature of the
    6·1 answer
  • An FCC iron-carbon alloy initially containing 0.20 wt% C is carburized at an elevated temperature and in an atmosphere wherein t
    6·1 answer
  • The mechanical properties of a metal may be improved by incorporating fine particles of its oxide. Given that the moduli of elas
    5·1 answer
  • What is your employer required to have on fixed ladders that extend more than 24 feet in the workplace?
    15·2 answers
  • Using only the sequential operations described in Section 2.2.2, write an algorithm that gets two values: the price for item A a
    5·1 answer
  • How can you drop two eggs the feweHow can you drop two eggs the fewest amount of times, without them breaking? ...st amount of t
    13·2 answers
  • 6 A square silicon chip (k 150 W/m K) is of width w 5 mm on a side and of thickness t 1 mm. The chip is mounted in a substrate s
    9·1 answer
  • The compression ratio of most small gasoline engines falls between_______and________.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!