Answer:
You first need to construct a balanced chemical equation to describe the reaction:
KOH + HNO3 ---------> KNO3 + H2O
Work out the no. moles of HNO3 being neutralized:
Moles = Volume x Concentration = (25/1000) x 0.0150 = 0.000375 moles
From the balanced equation the molar ratio of KOH to HNO3 is 1:1 so you also need 0.000375 moles of KOH to neutralise the nitric acid
Now you can work out the volume of KOH required:
Volume = Moles/Concentration = (0.000375)/0.05 = 0.0075 dm^3 = 7.5 cm^3
Answer:
Generally, a gas behaves more like an ideal gas at higher temperature and lower pressure, as the potential energy due to intermolecular forces becomes less significant compared with the particles' kinetic energy, and the size of the molecules becomes less significant compared to the empty space between them.
Explanation:
I think the answer is codominant??
I think answer is
C. Something that can be observed or measured while changing the identity of the substance